Skip to main content

Hamming Distance Kernelisation via Topological Quantum Computation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Abstract

We present a novel approach to computing Hamming distance and its kernelisation within Topological Quantum Computation. This approach is based on an encoding of two binary strings into a topological Hilbert space, whose inner product yields a natural Hamming distance kernel on the two strings. Kernelisation forges a link with the field of Machine Learning, particularly in relation to binary classifiers such as the Support Vector Machine (SVM). This makes our approach of potential interest to the quantum machine learning community.

R. Nagarajan—Partially supported by EU ICT COST Action IC1405 “Reversible Computation Extending Horizons of Computing”.

D. Windridge—Supported by EU Horizon 2020 research project No. 731593 “Dream-like simulation abilities for automated cars (DREAMS4CARS)”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The distant union of two arbitrary links L and M, denoted by \( L \sqcup M\) is obtained by first moving L and M so that they are separated by a plane, and then taking the union.

References

  1. Adams, C.: The Knot Book. W.H. Freeman, New York (1994)

    MATH  Google Scholar 

  2. Aharonov, D., Jones, V., Landau, Z.: A polynomial quantum algorithm for approximating the Jones polynomial. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 427–436 (2006)

    Google Scholar 

  3. Alexander, J.W.: A lemma on systems of knotted curves. Proc. Natl. Acad. Sci. U.S.A. 9(3), 93–95 (1923)

    Article  Google Scholar 

  4. Markoff, A.: Uber die freie äquivalenz der geschlossenen zöpfe. Rec. Math. [Mat. Sbornik] N.S. (1936)

    Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  6. Freedman, M.H.: P/NP, and the quantum field computer. Proc. Natl. Acad. Sci. 95(1), 98–101 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamming, R.W.: Error detecting and error correcting codes. Bell System Tech J. 29, 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  9. Jones, V.F.R.: A polynomial invariant for knots via von Neumann algebras. Bull. Amer. Math. Soc. (N.S.) 12(1), 103–111 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kauffman, L.H.: New invariants in the theory of knots. Am. Math. Monthly 95(3), 195–242 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kauffman, L.H.: Knots and Physics. Series on Knots and Everything, 4th edn. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  13. Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  16. Reidemeister, K.: Knoten und Gruppen. Springer, Heidelberg (1932). https://doi.org/10.1007/978-3-642-65616-3

    Book  MATH  Google Scholar 

  17. Reidemeister, K.: Elementare begründung der knotentheorie. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 5(1), 24–32 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  18. Satō, H.: Algebraic Topology: An Intuitive Approach. Iwanami Series in Modern Mathematics. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  19. Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49, 957–959 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Di Pierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Pierro, A., Mengoni, R., Nagarajan, R., Windridge, D. (2017). Hamming Distance Kernelisation via Topological Quantum Computation. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics