Skip to main content

Computational Modeling of Turbulent Structuring of Molecular Clouds Based on High Resolution Calculating Schemes

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Included in the following conference series:

  • 937 Accesses

Abstract

The article submits the results of 3D computational modeling of the adiabatic interaction between a shock wave and molecular clouds, central impact and glancing collision between them, in the case of counter movement. According to the problem set in the first case, two spherical clouds with pre-established density fields interact with the post-shock medium of supernova blast remnants. It is demonstrated that the collision give rise to the supersonic turbulence in a cloud mixing zone, the formation of cone-like filamentous structures, the significant stratification of gas density and the disruption of clouds. Problems of vortex filaments origination in clouds wakes are analyzed after simulation of supersonic forward and glancing collision of two molecular clouds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferriere, K.M.: The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)

    Article  Google Scholar 

  2. Vázquez—Semandeni, E., Ostriker, E.C., Passot, T., Gammie, C.F., Stone, J.M.: Compressible MHD turbulence: implications for molecular cloud and star formation. In: Mannings, V. et al. (eds.), Protostars and Planets IV, University of Arizona, Tucson, pp. 3–28 (2000)

    Google Scholar 

  3. Beuther, H., Ragan, S.E., Johnston, K., Henning, T., Hacar, A., Kainulainen, J.T.: Filament fragmentation in high-mass star formation. A&A 584(A67), 1–12 (2015)

    Google Scholar 

  4. Truelove, J.K., Klein, R.I., McKee, C.F., Holliman, J.H., Howell, L.H., Greenough, J.A., Woods, D.T.: Self-gravitational hydrodynamics with 3-D adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation. ApJ 495, 821 (1998)

    Article  Google Scholar 

  5. Bate, M.R., Bonnell, I.A., Price, N.M.: Modeling accretion in protobinary systems, monthly notices of the royal astronomical society. MNRAS 277(2), 362–376 (1995)

    Article  Google Scholar 

  6. Price, D.J., Monaghan, J.J.: An energy conserving formalism for adaptive gravitational force softening in SPH and N-body codes. MNRAS 374, 1347–1358 (2007)

    Article  Google Scholar 

  7. Vinogradov, S.B., Berczik, P.P.: The study of colliding molecular clumps evolution. Astron. Astrophys. Trans. 25(4), 299–316 (2006)

    Article  Google Scholar 

  8. Arreagga-Garcia, G., Klapp, J., Morales, J.S.: Simulations of colliding uniform density H2 clouds. Int. J. Astr. Astrophys. 4, 192–220 (2014)

    Article  Google Scholar 

  9. Lucas, W.E., Bonnel, I.A., Forgan, D.H.: Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation? MNRAS 469(2) (2017)

    Google Scholar 

  10. Pittard, J.M., Falle, S.A.E.G., Hartquist, T.W., Dyson, J.E.: The turbulent destruction of clouds. MNRAS 394, 1351–1378 (2009)

    Article  Google Scholar 

  11. Elmegreen, B.G.: Star formation in a crossing time. Astrophys. J. 530(277), 281 (2000)

    Google Scholar 

  12. Dawson, J.R., Ntormousi, E., Fukui, Y., Hayakawa, T., Fierlinger, K.: The Astrophysical Journal, 799(64) (2015)

    Google Scholar 

  13. Johansson, E.P.G., Ziegler, U.: Radiative interaction of shocks with small interstellar clouds as a pre-stage to star formation. Astrophys. J. 766, 1–20 (2011)

    Google Scholar 

  14. Nakamura, F., McKee, C.F., Klein, R.I., Fisher, R.T.: On the hydrodynamic interaction of shock waves with interstellar clouds. II. The effect of smooth cloud boundaries on cloud destruction and cloud turbulence. Astrophys. J. 164, 477–505 (2006)

    Google Scholar 

  15. Pittard, J.M., Parkin, E.R.: The turbulent destruction of clouds – III. Three dimensional adiabatic shock-cloud simulations. MNRAS 457(4), 1–30 (2015)

    Google Scholar 

  16. Pittard, J.M., Goldsmith, K.J.A.: Numerical simulations of a shock-filament interaction. MNRAS 458(1), 1–25 (2015)

    Google Scholar 

  17. Melioli, C., de Gouveia Dal Pino, E., Raga, A.: Multidimensional hydro dynamical simulations of radiative cooling SNRs-clouds interactions: an application to starburst environments. Astronomy Astrophys. 443, 495–508 (2005)

    Google Scholar 

  18. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik. 47, 271–306 (1959)

    MATH  Google Scholar 

  19. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 727 p. Springer, Heidelberg (1997)

    Google Scholar 

  21. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rybakin, B.P., Stamov, L.I., Egorova, E.V.: Accelerated solution of problems of combustion gas dynamics on GPUs. Comput. Fluids 90, 164–171 (2014)

    Article  Google Scholar 

  23. Rybakin, B., Smirnov, N., Goryachev, V.: Parallel algorithm for simulation of fragmentation and formation of filamentous structures in molecular clouds. In: Voevodin, V., Sobolev, S. (eds.) CCIS 687, RuSCDays 2016, vol. 687, pp. 146–157 (2016)

    Google Scholar 

  24. Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: In turbulence and nonlinear processes in astrophysical plasmas. American Institute of Physical Conference Series, Shaikh, D., Zank, G.P. (eds.), vol. 932, pp. 393–399, ApJ, 665, 416 (2007)

    Google Scholar 

  25. Shu, F.H., Adams, F.C., Lizano, S.: Star formation in molecular clouds - observation and theory. ARA&A, pp. 25–23 (1987)

    Google Scholar 

Download references

Acknowledgements

The work has been funded by the Russian Foundation for Basic Research grants No. 16-29-15099, 17-07-00569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Rybakin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rybakin, B., Goryachev, V., Ageev, S. (2017). Computational Modeling of Turbulent Structuring of Molecular Clouds Based on High Resolution Calculating Schemes. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics