Skip to main content

The Technology of Nesting a Regional Ocean Model into a Global One Using a Computational Platform for Massively Parallel Computers CMF

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Included in the following conference series:

Abstract

When developing regional ocean circulation model, the problem arises of providing the model with boundary conditions. An algorithm for one-way nesting (inclusion with boundary conditions) for a local model of an arbitrary ocean region in the model of the global ocean is proposed. Two problems are solved: (1) generation of a rectangular grid of the local model; (2) receive information. The nesting algorithm is developed within the framework of the CMF3.0 (Compact Modeling Framework) computing platform for massively parallel computers. Local and global models work as components of a coupled system running CMF3.0. Data nesting functions work as a CMF3.0 software service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibrayev, R.A., Khabeev, R.N., Ushakov, K.V.: Eddy-resolving 1/10° Model of the World Ocean. Izv. Atmos. Oceanic Phys. 48(1), 37–46 (2012)

    Article  Google Scholar 

  2. Kalmykov, V., Ibrayev, R.: CMF - framework for high-resolution Earth system modeling. In: CEUR Workshop Proceedings, Proceedings of the 1st Russian Conference on Supercomputing (RuSCDays 2015), Moscow, Russia, 28–29 September 2015, vol. 1482, pp. 34–40. MSU publishers, Moscow (2015)

    Google Scholar 

  3. Kalmykov, V.V., Ibrayev, R.A.: A framework for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures. Numer. Methods Program. 14(2), 88–95 (2013)

    Google Scholar 

  4. Sheng, J., Greatbatch, R.J., Zhai, X., Tang, L.: A new two-way nesting technique for ocean modeling based on the smoothed semi-prognostic method. Ocean Dyn. 55, 162–177. Springer (2005). https://doi.org/10.1007/s10236-005-0005-6

  5. Blayo, E., Debreu, L.: Nesting ocean models. In: Chassignet, E.P., Verron, J. (eds.) Ocean Weather Forecasting, pp. 127–146. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-4028-8_5

    Chapter  Google Scholar 

  6. Menéndez, C.G., Saulo, A.C., Li, Z.-X.: Simulation of South American windertime climate with a nesting system. Clim. Dyn. 17, 219–231 (2001). Springer

    Article  Google Scholar 

  7. Scheinert, M., Biastoch, A., Böning, C.W.: The agulhas system as a prime example for the use of nesting capabilities in ocean modelling. In: Resch, M., Roller, S., Benkert, K., Galle, M., Bez, W., Kobayashi, H. (eds.) High Performance Computing on Vector Systems 2009, pp. 191–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03913-3_15

    Chapter  Google Scholar 

  8. Kaurkin, M., Ibrayev, R., Koromyslov, A.: EnOI-Based Data Assimilation Technology for Satellite Observations and ARGO Float Measurements in a High Resolution Global Ocean Model Using the CMF Platform. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 57–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55669-7_5

    Chapter  Google Scholar 

  9. Tolstykh, A., Ibrayev, R.: Models of the global atmosphere and the World Ocean: algorithms and supercomputer technologies. In: Tutorial, p. 144. Publishing House of Moscow University, Moscow (2013). (in Russian)

    Google Scholar 

  10. Fadeev, R., Ushakov, K., Kalmykov, V., et al.: Coupled atmosphere–ocean model SLAV–INMIO: implementation and first results. Russ. J. Numer. Anal. Math. Model. 31(6), 329–337 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  11. Craig, A.P., Vertenstein, M., Jacob, R.: A new flexible coupler for Earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. C 26(1), 31–42 (2012)

    Article  Google Scholar 

  12. Redler, R., Valcke, S., Ritzdorf, H.: OASIS4 - a coupling software for next generation earth system modeling. Geosci. Model Dev. 3, 87–104 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

To test the performance of the nesting service and the compact computing platform CMF 3.0, tests were conducted on the supercomputers Lomonosov and MVS-10P, which confirmed the numerical efficiency of the proposed software product.

The study was performed by a Grant #14-37-00053 from the Russian Science Foundation in Hydrometcentre of Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Kaurkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koromyslov, A., Ibrayev, R., Kaurkin, M. (2017). The Technology of Nesting a Regional Ocean Model into a Global One Using a Computational Platform for Massively Parallel Computers CMF. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics