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Abstract. In the recent years a number of novel, automatic map-inference
techniques have been proposed, which derive road-network from a cohort
of GPS traces collected by a fleet of vehicles. In spite of considerable
attention, these maps are imperfect in many ways: they create an abun-
dance of spurious connections, have poor coverage, and are visually con-
fusing. Hence, commercial and crowd-sourced mapping services heavily
use human annotation to minimize the mapping errors. Consequently,
their response to changes in the road network is inevitably slow.
In this paper we describe MapFuse, a system which fuses a human-
annotated map (e.g., OpenStreetMap) with any automatically inferred
map, thus effectively enabling quick map updates. In addition to new
road creation, we study in depth road closure, which have not been ex-
amined in the past. By leveraging solid, human-annotated maps with
minor corrections, we derive maps which minimize the trajectory match-
ing errors due to both road network change and imperfect map inference
of fully-automatic approaches.
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1 Introduction

Map Fusion Problem: Generating accurate maps from geospatial data is an
active area of research. A number of these works [5, 8, 10, 13] utilize crowd-
sourced GPS data, e.g., from smartphones. An alternate strain of work tries to
use other sources such as satellite images [18]. Despite considerable interest and
effort by the research community, the existing automatic map inference solutions
have a number of shortcomings, including: limited coverage, visually confusing
layout, spurious roads, and imperfect turn restrictions. Hence, commercial maps
such as Google Maps, Nokia HERE, and Apple Maps often use multiple sources
of data information to generate initial maps, and then rely heavily on humans
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(both annotators and volunteers) to detect and correct the possible imperfec-
tions. However, the involvement of humans results in a very slow response in
updating maps when a change in the road network occurs. In many cities in
Asia and Africa, which are under heavy construction, this process results in sub-
stantial latency. One potential way to solve this issue is to automatically update
the map using GPS traces given an existing map. However, most of those ap-
proaches are simple adaptations of classical map inference algorithms and suffer
from the same disadvantages. In this work, we advocate for a new approach - Map
Fusion - which automatically fuses two maps. One of the maps is a high-quality
slowly updated map such as OpenStreetMap (OSM) [19] or Google Maps [15],
while the other one is an automatically inferred map with incomplete coverage
and imperfect topological structure. Our proposed system, MapFuse, synthesizes
a new map that overcomes the deficiencies of the two maps discussed above. In
the rest of the section, we enunciate this overall approach.

1.1 Challenges in Fully Automatic Map Inference

As mentioned above, there has been extensive work (see surveys [3, 5, 16]) on
automatic map creation from GPS traces. However, these algorithms - both
academic and commercial - face a number of important challenges. We now
highlight three of the major ones.

– Poor coverage. The popularity of roads segments in the road network (mea-
sured, say, in number of trajectories which pass by the segment) is very
skewed. While a few road segments (e.g., those lying on a highway) carry a
massive number of trajectories, a large fraction of roads serves only a hand-
ful of cars. Hence, a vehicle fleet which opportunistically collects the GPS
data needs to collect a massive amount of spatial samples in order to have a
decent coverage of the road network. In the case of the fleet whose data we
analyzed in this work, if we denote by L the total length of all the roads in
Doha (L is in the order of 10s of thousands of kilometers) our data, which
corresponds to the trajectories with overall length of 175 · L, covers only
about 48% of the road segments (see Figure 3). In order to cover close to
100% of the road network with such opportunistic GPS probes, one would
need to collect from one to two orders of magnitude more data, which in case
of Doha would translate to 10s or 100s of millions of kilometers of driving.
Thus, independent of the map-inference method one utilizes, one needs to
have an extremely high-volume of opportunistically collected GPS data in
order to cover large portions of the road network.

– Visually confusing outlook. Most of the existing approaches do not control
for the visual appearance of their maps, and hence the resulting maps have
rather confusing look and are not visually appealing. In Figure 1 we depict
maps of a prominent “TV roundabout” in Doha derived by several well-
known map-inference algorithms [5, 8, 10, 13, 24]. Due to different nature of
their inference process, they all have some unique features, yet they all have
spurious or missing road segments, which can confuse the end-user and the
navigation system which may utilize such maps.
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Fig. 1. Automatically inferred maps of 6 existing methods.

– Low topological accuracy. Possibly the most serious concern regarding the
existing map-inference methods is their low topological accuracy. Namely,
due to the GPS noise as well as the inability to efficiently handle such noise,
all existing methods often miss the connections between road segments or
infer non-existing connections between road segments. Such topological inac-
curacies are absolutely non-tolerable, yet existing solutions have topological
Biagioni F1-score1 [5] in the range of 0.6 to 0.8 [6, 24]. We believe that a
commercially acceptable map would likely need to have Biagioni F1-scores
in the nearest proximity of 1.

1.2 Challenges for Automatic Map Updates

TomTom reports that 15% of roads change each year in some way [26]. The
road changes are particularly common in many developing countries in Asia
and Africa due to rapid construction of new roads. For example, thousands of
kilometers of new expressways have been constructed each year in China and
India for the past few years [25]. Automating the map update in a way that

1 Biagioni F1-score is a well known metric for measuring the topological accuracy of
a map and lies in the range [0, 1] with 0 being absolutely wrong map, and 1 being a
perfect map.



minimizes the disruption to the original map is of paramount importance. There
has been extensive work on automatically updating an existing map using newly
acquired GPS data (see Section 2 for details). However, many of these algorithms
are often simple adaptations of existing batch map-inference algorithms, and
suffer from the same issues mentioned above. In addition, they often start with
an automatically generated map which also suffers from the issues mentioned
above. Hence the resulting map is often of substandard quality.

1.3 Challenges for Hybrid Map Updates

Fig. 2. Google maps route suggestion between two locations in Doha are almost twice
longer (in length and duration) than the optimal route.

According to the discussion so far, we believe that a hybrid method involving
automatic algorithms along with humans is the way forward. The substandard



quality of maps from purely automated means is often unacceptable for commer-
cial map systems such as Google Maps, Apple Maps, Bing Maps, Nokia HERE,
and Tom Tom. The creation of these maps is in many ways automated, however
it requires human attention to examine possible places of interest. For example,
Google Maps has a large team of so called operators who ensure the validity
and consistency of the Google maps [17] and hence any possible change in the
road network needs to be approved by one of the operators. Similarly, the largest
global crowd-sourced mapping effort OpenStreetMap (OSM) updates around 1M
nodes per day. These maps have reasonably high accuracy in most cities with
static road infrastructure.

However, even this approach has some fundamental limitations. Due to the
human in the loop, they suffer from slow update response when changes hap-
pen (see Figure 2). In many cities such as Doha, there are constant and large
changes in road networks, that are not reflected in the maps in a timely manner.
Conversely, automated algorithms often ignore the fact that most urban areas
globally already have a fairly accurate map infrastructure. Not utilizing such
great resource to construct the map (as most automatic map inference solutions
do) is unfortunate and hurts the overall map inference process. Let us illustrate
this effect with a real-world example.

In the city like Doha, with a very dynamic road network,2 the quality of
existing maps is rather poor. For example, when one queries Google Maps for a
route suggestion between two points in west Doha (see Figure 2), the suggested
routes are almost twice as long (in both time and length) than the optimal one.
Even though the optimal route has existed for over a year, the Google Maps has
not yet updated the relevant portion of the map to reflect the current layout.

1.4 Proposed Approach

In this paper we propose MapFuse, a system for map fusion which automatically
merges two maps. Specifically, we seek to fuse (1) a high-quality slowly-updated
map such as OSM [19] or Google Maps [15] and (2) an automatically-inferred one,
with incomplete coverage and imperfect topological structure. MapFuse produces
a map which overcomes the deficiencies of the two maps discussed above.

In contrast with the existing approaches on map updating, which update
the existing map (say OSM) by using a set of GPS trajectories via a specific
map-inference tool, MapFuse is oblivious to the map inference approach one
wishes to use to capture the road network segments and the interconnections
between them. Hence we can fuse any map to the existing underlying map. This
is important because existing map inference solutions suffer from a number of
issues, and future solutions will most certainly rectify many of those. Fusing such
better-inferred maps will most certainly lead to higher quality maps.

Finally, a very relevant aspect of map updating are road closures (both tem-
porary and permanent) which are overlooked by the previous work on map

2 Influenced by a rapid construction of the city metro and a number of ongoing in-
frastructure projects.



updating, as it focuses only on new road additions [22, 26]. We use the GPS
trajectory data to understand the road dynamics and infer road closures as soon
as they happen.

Summary of Contributions:

– We introduce the problem of map fusion, which seeks to update a base map
with another inferred map, as a geometric graph matching problem and show
it can be treated as a minimal vertex cover problem on an appropriately-
defined bipartite graph.

– Due to the size of the graphs representing the two maps (which can have
hundreds of thousands of nodes) the polynomial solution to the bipartite
vertex cover problem is not practical and we propose an efficient heuristic
that fuses two maps.

– We suggest a new methodology for inferring closed road segments which
utilizes dynamic statistics of the roads as well as a node centrality measure.
As an unexpected advantage of our closure detection we identify the errors
in the OSM maps (e.g., we can automatically pinpoint several roundabouts
which are represented in the OSM as two-way roads, while they are obviously
one-way only) which can be harmful to the navigation systems.

– Using a set of GPS trajectories from a fleet of vehicles in Doha we demon-
strate that the fused map is more accurate than either of the two maps,
and reduces the average/median/99th-percentile trajectory matching error
by 30%.

2 Related Work

Map Inference: Constructing maps from crowdsourced GPS traces has been
extensively studied (see surveys [3, 5, 16]. K-Means based algorithms cluster the
GPS points and link the resulting clusters into a routable map. Representative
works include [1, 13, 21]. Kernel density estimation (KDE) based algorithms such
as [9, 11, 23] transform the GPS points into a density discretized image that
are processed by image processing techniques to obtain maps. Trace merging
based approaches start with an empty map and carefully add traces into it.
Representative works include [2, 8].
Maintaining Maps: Maintaining maps is closely related to map inference and
often the algorithms for map maintenance are adaptations of those for map
inference. Nevertheless, there are some subtle differences. While one can indeed
obtain an updated map by re-running the entire inference pipeline, it is often
efficient - in terms of both time and data - to treat it as a separate problem.

Recall that almost 15% of roads change every year in the US [26]. This
number is even higher in many developing countries in Asia and Africa due to
rapid construction of new roads. For example, thousands of kilometers of new
expressways are being constructed each year in China and India for the past few
years [25]. This necessitates research into work that maintain and update maps
as and when new GPS data points arrive. Some representative work include [2,
4, 7, 21, 22, 25, 26, 27, 30]. However, most of these approaches do not have



good practical performance and are very sensitive to differential sampling rates,
disparity in data points, GPS errors etc. Often, these algorithms seek to directly
extend one of the three approaches and suffer from bottlenecks arising from
algorithmic step that is fundamental to it (such as clustering, density estimation,
clarification, map matching) etc.

Additionally, while most of the prior work handle the simple case of new road
additions, road closures are rarely addressed. CrowdAtlas [26] is exception that
uses a simple heuristic in which each road segment is assigned an appropriate
timeout proportional (3x) to the maximum time observed between the traversal
of two successive vehicles in a training window. To cope with the cold start
problem, no timeout is set for a segment until it has accumulated at least a week
of data and at least five traces. Thus, most residential roads have no timeout
established.
Graph Matching: Given two graphs, identifying if one graph is a subgraph of
another is known to be NP-Complete [14]. In fact, even identifying the minimal
set of ‘edits’ to transform one graph to another is also NP-Complete [29]. How-
ever, it is possible to apply a number of heuristics for the case of road networks
to solve this problem effectively. Matching of two road networks has been exten-
sively studied due to its practical importance. The process of integrating differ-
ent geospatial data to get new cartographic products is called map conflation.
See [20] for a review of techniques used. Often, a wide variety of information
including spatial features (such as distances, angles, shapes of the map) and
topographical information (such as neighborhood) are used. For example, [28]
proposed a heuristic probabilistic relaxation procedure to integrate multi-source
geospatial data by using similarities between shapes. Recently, [12] studied the
problem of integrating authoritative geo-spatial data (such as OpenStreetMap)
with crowdsourced GPS information. However, they use auxiliary information
such as names and types of POIs that may not always be available.

3 Problem Formulation

A common representation of a map in the map-inference literature is a directed
graph as following. A map is a geometric graph G(V,E, L), where V is the set
of vertices, E ⊆ V × V is the set of edges connecting pairs of vertices, and
L : V → R2 is a location function which assigns coordinates (latitude and
longitude) to each vertex.

Given two instances of such graphs (maps), G1 and G2, our goal is to create a
new fused graph Gf = f(G1, G2) which preserves some properties of the source
graphs. In particular, we wish for the connectivity of the fused graph to subsume
the connectivity of the source graphs. However, we also wish to do so with the
minimum number of edges, in order to avoid unnecessary and spurious ones.

In order to express the connectivity property, we consider the set of shortest
paths πi within each graph Gi. The fused graph Gf should be so that

∀p ∈ πi, ∃p̂ ∈ πf s.t. d(p, p̂) ≤ θ, i ∈ {1, 2}, (1)



where d(·, ·) is a suitable distance function between paths which takes into ac-
count their geometry, and θ is a user-specified tolerance parameter. In our paper
we use the following distance function

d(p0, p1) = min
i=0,1

max
u∈pi

v(u, p1−i)

where v(u, p) is the minimum distance between a point u and path p measured
in meters. Thus a small d(p0, p1) indicates that one of the two paths can be
matched onto the other.

In addition, we wish to find the “minimum” such graph, i.e., the one that
minimizes the sum of the lengths of its shortest paths:

arg min
Gf

∑
p∈πf

`(p).

This problem formulation can be reconducted to a minimum vertex cover
problem on a suitably-defined bipartite graph H(π1, π2, F ). The two sets of ver-
tices in H are all the possible shortest paths in G1 and in G2 (π1 and π2, respec-
tively). There is an edge (u, v) between two elements u and v if their distance is
below the threshold, i.e.

(u, v) ∈ F ⇐⇒ d(u, v) ≤ θ, u ∈ π1, v ∈ π2.

Finding a minimum vertex cover M on H is equivalent to finding a minimum
set of shortest paths such that their union maintains the connectivity property
of the two source graphs. Therefore, Gf can be build from the union of these
paths M ⊆ π1 ∪ π2.

Note that due to König’s theorem, the minimum vertex cover problem on
a bipartite graph is actually tractable in polynomial time (and not NP-hard
as in the general case). However, the size of the problem is O(n2), and that
to materialize H näıvely we need to compute O(n4) distances between pairs of
shortest paths.

Graphs representing the OSM and inferred maps in a large city such as Doha
have more than n = O(100K) nodes. Hence the polynomial solution we hinted
above is impractical. Therefore in the following section we propose a simple and
efficient heuristic for tackling map fusion problem.

4 New Roads Detection

A common approach used in the literature [22, 26] to identify or detect new roads
is the following. First, run a map matching algorithm between an existing map
and a collection of GPS trajectories to identify the subset of trajectories that
remain unmatched. Second, run some road creation algorithm on the collection
of unmatched trajectories to identify the new roads. Finally, link the newly
created road segments to the existing map. That is, at the heart of the process,
an algorithm is required to create roads from GPS points, which is exactly what



all map inference algorithms do. Thus, it is hard to understand the real added
value of map updating algorithms compared to what map inference algorithms
do. For instance, if we assume that the initial map is very sparse, then it becomes
clear that map update algorithms will be creating most of the road network, just
like map inference algorithms do. Another way to look at the issue is to consider
an initial empty map: in this case the map update and map inference become
equivalent problems.

In our work, we take a slightly different approach. We assume that two maps
are given to us. One that represents the base map (e.g., OSM) and another one
that is generated using GPS traces via one of the many map inference algorithms
available. The problem is then redefined as merging these two maps.

The function FindOutliers takes as input two maps M1 (original) and M2

(inferred), and generates a set of outliers. Outliers are set of nodes in the map M2

which are at distance at least θ (here we use θ = 20m). Mappings link nodes in
M2 to M1, whereas outliers are those nodes in M2 that have no correspondents in
M1. These nodes are considered as candidates to be part of new road segments
not covered in M1. Our road addition procedure (see Algorithm 1) works as
follows.

Algorithm 1 MapFuse

1: Input: Base road map M1, inferred map M2

2: Parameters: collision radius (r, in meters)
3: outliers = FindOutliers(M1,M2)
4: DRS = Subgraph(M2, outliers)
5: for each o ∈ outliers do
6: compute distance(o,M1)
7: end for
8: outliers = Sort(outliers) in decreasing order of distance to M1

9: for each o ∈ outliers do
10: sg = BFS(o,DRS)
11: for each node n ∈ sg do
12: if distance(n,M1) ≤ r then
13: merge(n, argmin(n,M1))
14: end if
15: outliers = outliers− {n}
16: end for
17: end for
18: return M1

In line 4, the sub-graph of newly detected roads (DRS) in M2 is generated
from the outliers. In lines 5− 8, the outliers are sorted in a decreasing order of
their geometric distance to M1. The intuition here is that the farther a node is
from M1, the more likely that node lays on a new road segment not covered by
M1. Outlier nodes are then processed in their order as follows. For each node o,
we run a breadth first search (BFS) in M2 starting from o until it reaches a leaf



node or a node that is within a radius r (e.g., 2 meters) from M1. Leaf nodes are
assumed to be dead ends of newly detected road segments whereas nodes within
a radius distance r from M1 are assumed to belong to M1. Nodes in the latter
case are then merged with their closest nodes in M1 as per line 13.

It is not difficult to see that the output Mf of above algorithm satisfies
the condition from the Eq. (1). All paths from M1 are indeed in Mf and are
obviously matched by paths of Mf , the nodes from M2 which are more than
θ away from M1 eventually get merged into the Mf and clearly satisfy the
matching requirement (1).

5 Closed Roads Detection

Recall that the input to our process is the original map M1, GPS-level trajec-
tory data and the automatically inferred map M2. An important characteristic
of the road network are road closures, which are sometimes permanent, but of-
ten temporary. Unfortunately, road closures have been overlooked by previous
map-inference/map-update literature and in this section we propose two novel
techniques for inferring road closures. The first one is ‘static’, in that it infers
the road closures on a fixed input of trajectory data on the roads which have
been closed prior to the start of the data collection. The second technique is
more dynamic, as it observes the time series of the trajectories passing by a
given road segment and by looking for anomalies is such time-series it effectively
detects the road closures on the segments which have previously carried some
trajectories in the data.

5.1 Cold-start road closure detection

As we hinted above, trajectory data collection inevitably has a starting point
which is determined by either the functionality of the probe and the back-end
system which stores the data, or by privacy regulations which may require sen-
sitive trajectory data to be deleted after a period of time elapses.

What makes detection of closed road segments (from map M1) difficult is the
fact that there is a very high skew in the frequency of trajectories on different
road segments: some segments (e.g., highways) carry a large number of trajecto-
ries while others in the capillary roads may not carry even a single trajectory. In
Figure 3 we show how many new segments are ‘discovered’ as more driving data
is collected. If we denote by L the total length of the road network, after trajec-
tories with total length of L, only about 10% of the unique road segments are
touched by those trajectories. After the total trajectory length gets to 10L they
touch around 22% unique road segments. With all trajectories in our dataset
with total length of 175L, we get to detect only about 48% of the road network.

Thus, therein lies a dilemma: is a segment from map M1 which has not carried
any trajectory a closed road segment or it simply did not see a trajectory due to
its peripheral nature? To answer this dilemma we initially aimed to exploit the
OSM meta-data of OSM road segments such as road type, speed limit, number of
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trajectories up to a point in time and total length of the road infrastructure. For close
to 100% coverage one would need to have very, very, large trajectory dataset.

lanes or one-way tag. However, the OSM meta-data appears to be rather sparse
and is unlikely to give us the relevant road importance score which would help
answering the above dilemma.

We address the aforementioned question by evaluating the node betweenness
centrality (BC)3 in map M1. The BC of a node acts as an indicator of the
importance of the node in the graph M1, and not-surprisingly we see a strong
dependence between the centrality of a given road segment and the number of
trajectories in our data that pass through it. As seen in Figure 4, the trend is
that the more trajectories a node has the higher BC and vice versa. In Figure 5
we depict the empiric CDF of node BC for two classes of nodes: those who lie on
at least one trajectory and those who do not. We observe that BC mean/median
among the nodes which lie on at least one trajectory is an order of magnitude
larger than among the nodes which are not carry any trajectory.

Based on these observations, we declare the road segment closed if it has
no trajectories passing by it and its BC is greater than the threshold γ. We
choose γ = 0.01 to shave off the tail of the BC distribution among the nodes
with no trajectories. Such γ identifies a handful of roads which are closed which
we confirm by inspecting each one of them. In addition to those closed roads
which are a sequence of closed nodes (with BC > γ) there are several nodes

3 We believe using another node-centrality measure would likely give similar results,
though we do not evaluate the impact of the choice of centrality measure in this
work. However, the use of betweenness is consistent with the problem definition in
Section 3.
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Fig. 4. Scatter plot OSM node betweenness centrality vs. number of trajectories passing
through each node (logarithmic scale).

which are candidates for closure but are isolated from the other candidates.
In order to declare the road closed we require that at least 100 meters segment
(approximately 5-6 nodes) with corresponding nodes to be candidates for closure.

We would also like to point out that the proposed methodology allows us to
infer inconsistencies between the OSM data and the traffic reality as captured
by the GPS data. Namely, several roundabouts (formed by nodes with BC > γ)
are represented in OSM as two way streets, however the clock-wise direction in
those roundabouts is not matched by any trajectory and hence it is correctly
identified as closed road (in that direction) which is an unexpected benefit of
using the method described above.

5.2 Road Closure as Anomaly Detection

The method described in the previous section detects the road closures which
have happened before the data collection started and it is applicable only to
major roads - those with high betweenness centrality. However, for roads which
get closed during the data collection we develop an anomaly detection module
which monitors the traffic on each road segment and identifies “abnormal” gaps
in the traffic stream.

For each node in the map M1 we track the list of timestamps each time a
trajectory is matched to that node. Note that sometimes a trajectory may have
multiple records which are mapped to the same node (e.g., if the node is near a
traffic light and the vehicle is static it will generate multiple data records which
map to the same node in the map) and hence we only record the first match of
the trajectory at the node and ignore the others.
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As described previously, the road popularity (measured by number of trajec-
tories which pass by it) distribution is rather skewed. In Figure 6 we plot the
number of trajectories that are mapped to every OSM node in our dataset and
observe that a large fraction of nodes have only a handful of trajectories which
pass by it. Consequently, detecting anomalies on such low-frequency roads is
rather challenging.

To detect the road closure during the data collection, each node v in the OSM
graph maintains meanv(t): the average inter-arrival time among all trajectories
which have passed that node until time t. In addition to that it also maintains the
time elapsed since the last trajectory: ev(t). Note that for optimization reasons,
the time elapsed is also computed when needed such as a case where a route
query is triggered.

We declare the node closed at time t if:

ev(t) > α ·meanv(t)

where α is a parameter which determines how conservative we are when deciding
to declare the road closed. Small values of α may declare roads closed prema-
turely, while with large α it may take a long time before a closed road is declared
as such.

To understand what is the right choice of α in Figure 7 we depict the his-
togram of the ratio between the maximum and the average trajectory inter-
arrival time for all nodes which receive at least 2 trajectories per day, in average.
We observe that the distribution of the max-to-average ratio is rather wide, and
there is not clear cut-off point. However, most of the distribution is in the range
between 1 and 40 with only a few nodes with the ratio greater than 40. Hence



we choose α = 40. Such choice results in only one closed road-section depicted in
Figure 8 during our 2-month long observation. It involves a closed roundabout
and respective access roads.

Finally, note that choosing a smaller α is likely to identify temporary road
closures. However, since we could not confirm whether or not such nodes corre-
spond to actual road closure or they simply fall in the tail of the distribution we
leave the detailed discussion of temporary closures to future work.
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Fig. 6. Empiric CDF of the number of trajectories per node for all nodes in the OSM
map. In our dataset only 18% of nodes have more than one trajectory per day in
average.

6 Evaluation

In this section we will exploit the GPS trajectory data to evaluate the quality
of the fused map.

6.1 Data

As we discussed earlier, our map inference process uses data generated by a fleet
of vehicles with GPS-enabled devices. In this paper we utilize the datasets from
Doha (Qatar) with around 400 vehicles, 11 Million GPS points (sampled every
10s). The dataset includes all GPS data points which fall into a rectangle (in
lat, lon coordinates) of 6km×8km in an urban region in the city of Doha with
a mixture of highways, high and medium volume roads, capillary streets, and
roundabouts. Every data record contains: timestamp, latitude, longitude, speed,
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Fig. 8. Detected closed OSM road segments (red). OSM road network (yellow). GPS
points after the road closure (black).



and heading of the moving direction of the vehicle. Heading is measured in angles
against the North axis in degrees reporting values from 0 to 360◦.

We preprocessed the data to eliminate those data points with speed ≤ 5kmph
which are known to have non-trivial noise when reporting location.

6.2 Using trajectory data to evaluate maps

In this section we analyze how well can we match trajectories to the maps. For
a mapM and a trajectory τ = (p1, . . . , pk) we denote by δ(τ,M) the maximum
distance between the points on the trajectory τ and M:

δ(τ,M) = max
pi∈τ

min
(u,v)∈M

v(pi, (u, v))

where v(pi, (u, v)) is simple distance to line segment in geo-distance, measured
in meters.

In our data we split all the trajectories in two subsets: training and test. We
use the training set for constructing map M2 and the test set of trajectories
for evaluating the matching distance. Since many trajectories from the same
driver coincide, we make sure that trajectories from the same driver do not fall
into both training and testing data. To that end, we split the set of drivers into
training/test drivers (75%/25% split) and assign all the trajectories from the
training/test driver into training/test trajectory dataset, respectively.

For automatic map inference we use Kharita [24], but note that using any
other automatically inferred map [6, 8, 10, 13] could be used with relatively small
(small, since only a handful of roads are being added to the map) impact on the
final fused map.

For each trajectory in the test data we evaluate δ(τ,M1), δ(τ,M2), and
δ(τ,M1

⊕
M2), where M1 is the underlying (OSM) map, M2 is the automat-

ically inferred map using the training trajectory data and M1

⊕
M2 is the

merged map.

δ(·, ·) mean median 99th-%

OSM 40.3m 9.3m 333m
automatic 12.3m 9.1m 70.4m
merged 8.1m 6.0m 53.4m

Table 1. Trajectory matching distance.

In Table 1 we report the mean, median and 99th-percentile trajectory match-
ing distance for the three maps. All three metrics (mean, median and 99th-
percentile) are minimized for the merged map and are around one third smaller
than for automatic map. The improvements in trajectory matching come for two
reasons. On one hand, trajectories which follow the new roads non-existing in



the OSM map, but discovered by the automatic map, enjoy better matching in
the merged map. On the other, the parts of the trajectories which correspond
to the roads which are not covered in the training data, are likely to be covered
in the OSM map and hence in the merged map.

7 Conclusion

In this paper, we proposed a new map update paradigm: map fusion. Instead
using a customized map-inference algorithm when updating a map, we allow
any map to be fused to the underlying (say OSM) map. Such fusion allows for
quick map updates, with minimal changes to the high-quality underlying map.
In addition to the map fusion, we also study in detail the road closure detection
and propose two methods which efficiently detect road closure by comparing the
statistical expectation of the traffic on a road segment against the actual traffic.
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