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Preface

This volume contains the papers accepted for presentation at the 7th International
Conference on Security, Privacy, and Applied Cryptography Engineering 2017
(SPACE 2017), held during December 13–17, 2017, at the Don Bosco College of
Engineering, Goa, India. This annual event is devoted to various aspects of security,
privacy, applied cryptography, and cryptographic engineering. This is indeed a very
challenging field, requiring expertise from diverse domains, ranging from mathematics
to solid-state circuit design.

This year we received 49 submissions from about eight different countries, out of
which, after an extensive review process, 13 papers were accepted for presentation at
the conference, and one shorter paper was accepted for short presentation. The sub-
missions were evaluated based on their significance, novelty, technical quality, and
relevance to the SPACE conference. The submissions were reviewed in a double-blind
mode by at least three members of the 36-member Program Committee (one more if at
least one of the authors was member of the Program Committee). The Program
Committee was aided by 50 additional reviewers. The Program Committee meetings
were held electronically, with intensive discussions.

The program also included seven invited talks and four tutorials on several aspects
of applied cryptology, delivered by world-renowned researchers: Asaf Ashkenazi,
Shivam Bhasin, Jean-Luc Danger, Thomas Eisenbarth, Harry Halpin, Mike Hamburg,
Gary Kenworthy, Victor Lomne, Axel Poschmann, Karim Tobich, Ingrid Ver-
bauwhede, and Yuval Yaron. We sincerely thank the invited speakers for accepting our
invitations in spite of their busy schedules. Like its previous editions, SPACE 2017 was
organized in co-operation with the International Association for Cryptologic Research
(IACR). We are thankful to Don Bosco College of Engineering for being the gracious
host of SPACE 2017.

There is a long list of volunteers who invested their time and energy to put together
the conference, and who deserve accolades for their efforts. We are grateful to all the
members of the Program Committee and the additional reviewers for all their hard
work in the evaluation of the submitted papers. We thank Cool Press Ltd., owner of the
EasyChair conference management system, for allowing us to use it for SPACE 2017,
which was a great help. We thank our publisher Springer for agreeing to continue to
publish the SPACE proceedings as a volume in the Lecture Notes in Computer Science
(LNCS) series. We are grateful to the local Organizing Committee, especially to the
organizing chair, Roseline Fernandes, who invested a lot effort for the conference to
run smoothly. We are further very grateful to Vishal Saraswat, program chair of
SPACE 2016, for his guidance and active support toward organizing SPACE 2017.
Special thanks to our general chairs, Rev. Fr. Kinley D’Cruz, Neena Panandikar, and
Sandeep Shukla, for their support and encouragement. Our sincere gratitude to Deb-
deep Mukhopadhyay, Veezhinathan Kamakoti, and Sanjay Burman for being



constantly involved in SPACE since its very inception and responsible for SPACE
reaching its current status.

Last, but certainly not least, our sincere thanks go to all the authors who submitted
papers to SPACE 2017, and to all the attendees. The conference is made possible by
you, and it is dedicated to you. We sincerely hope you find the proceedings stimulating
and inspiring.

October 2017 Sk Subidh Ali
Jean-Luc Danger

Thomas Eisenbarth
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On the (in)Security of ChaCha20
Against Physical Attacks

Shivam Bhasin

Temasek Labortaries, Nanyang Technological University Singapore
sbhasin@ntu.edu.sg

The stream cipher ChaCha20 and the Poly1305 authentication are adopted in several
products including Google Chrome [1], or OpenSSL [2] etc. For instance, Google
Chome often uses ChaCha20 for secure communication when the underlying platform
lacks hardware support for AES. The two algorithms have potential to be adopted
across multiple domains in the future. The ChaCha20-Poly1305 cipher suite is
advertised as being easier to implement in a side-channel resistant way [3], especially
compared to ciphers based on substitution permutation networks. However, the
side-channel security claim is only limited to timing based leakage. In this talk, we
investigate the security of ChaCha20 against two commonly known physical attacks:
side-channel attacks and fault attacks.

The first part focuses on power [4] or electromagnetic [5] based side-channels. The
development of the omnipresent Internet of Things (IoT), or the connected car
increases the amount of embedded appliances, which can be attacked using these
side-channels. Hence, it is important to understand the security of deployed crypto-
graphic algorithms not only against attacks on the timing side-channels but a wider
attack suite. We analyze the stream cipher ChaCha20 [3, 6] and show how the secret
key can be completely extracted. While first attack recovers the key from initial round
of ChaCha20, another attack demonstrates key retrieval exploiting the final addition.

The second part will look into active attacks realised using fault injection [7]. Often
stream ciphers are believed to be harder to attack against fault injection attacks owing
to the complexity of the required offline analysis. We propose four differential fault
analysis (DFA) attacks on ChaCha20 running on a low cost microcontroller, using the
instruction skip and instruction replacement fault models. The attacks target the key-
stream generation module at the decryption site, and entirely avoid nonce misuse. We
practically demonstrate our proposed attacks using a laser fault injection setup.

The talk is based on recent joint works. The part on side-channel attack is based on
recent work with Bernhard Jungk from NTU, Singapore [8]. Fault attacks was inves-
tigated with co-authors from IIT Kharagpur, India and NTU, Singapore [9].
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How to Digitally Construct and Validate
TRNG and PUF Primitives Which Are Based

on Physical Phenomenon?
(Tutorial)

Jean-Luc Danger

Telecom ParisTech, University Paris-Saclay, Scientific Advisor at Secure-IC
September 23, 2017

Abstract. In digital devices, the cryptographic functions are dependant on
peripheral primitives, like the True Random Number Generation (TRNG) and
Physically Unclonable Function (PUF) which generates a random number and
an identifier respectively. The source of these primitives is not defined by a
digital algorithm but comes from physical phenomenon, notably the noise.
Consequently a conversion is necessary to output a digital random number or
identifier. Indeed, these two types of primitives exploit the noise, but at different
stage. At the manufacturing stage, the variance of the manufacturing process
creates mismatches between transistors. These slight differences are fixed once
the chip is fabricated, they should be transformed by the PUF to a digital
variable when an identifer is called by the application. When the chip is in used,
the environmental noise is extracted by the TRNG to generate a digital random
number. In case of PUF, we can say that the entropy is “static”, whereas the
entropy for the TRNG is “dynamic”. The dynamic entropy is a major problem
for the PUF which is natively not steady because of the environmental noise.
The TRNG is very sensitive to an external noise, which can be malevolently
generated by an attacker, and can bias the TRNG output. Consequently, it is
necessary to add to the primitives an evaluation or correction block to detect or
enhance their behavior. This means that some tests and metrics have to be be
specified to define what is a good identifier and a good random number.

We will see in this tutorial, the different constructions of PUF and TRNG,
but also the methods to validate their quality to ensure a minimum level of trust.



Cache Attacks: From Cloud to Mobile

Thomas Eisenbarth

University of Lübeck and Worcester Polytechnic Institute
thomas.eisenbarth@uni-luebeck.de

Abstract. The microarchitecture of modern CPUs features many optimizations
that result in data-dependent runtime behavior. Data-dependent execution
behavior can result in information leakage, enabling malicious co-located pro-
cesses to overcome logical isolation boundaries of hypervisors and operating
systems. For instance, cache attacks that exploit access time variations when
retrieving data from the cache or the memory are a powerful tool to extract
critical information such as cryptographic keys from co-located processes.

This tutorial introduces several methods of how to exploit cache-based side
channels. Modern attacks and their behavior in various application scenarios,
from cloud to mobile and embedded processors will be discussed. It will be
shown of the introduced techniques can be applied to extract sensitive infor-
mation from a co-located processes or VMs across cores and even across pro-
cessor boundaries and how such attacks can be prevented.



May the Fourth Be With You:
A Microarchitectural Side Channel Attack

on Several Real-World Applications
of Curve25519

Daniel Genkin1,2 Luke Valenta1, and Yuval Yarom3,4

1 University of Pennsylvania
{danielg3,lukevg}@cis.upenn.edu

2 University of Maryland
3 University of Adelaide
yval@cs.adelaide.edu.au

4 Data 61, CSIRO

In recent years, applications increasingly adopt security primitives designed with
better countermeasures against side channel attacks. A concrete example is
Libgcrypt’s implementation of ECDH encryption with Curve25519. The
implementation employs the Montgomery ladder scalar-by-point multiplication,
uses the unified, branchless Montgomery double-and-add formula and imple-
ments a constant-time argument swap within the ladder. However, Libgcrypt’s
field arithmetic operations are not implemented in a constant-time side-
channel-resistant fashion.

Based on the secure design of Curve25519, users of the curve are advised
that there is no need to perform validation of input points. In this work we
demonstrate that when this recommendation is followed, the mathematical
structure of Curve25519 facilitates the exploitation of side-channel weaknesses.

We demonstrate the effect of this vulnerability on three software applica-
tions—encrypted git, email and messaging—that use Libgcrypt. In each case,
we show how to craft malicious OpenPGP files that use the Curve25519 point of
order 4 as a chosen ciphertext to the ECDH encryption scheme. We find that the
resulting interactions of the point at infinity, order-2, and order-4 elements in the
Montgomery ladder scalar-by-point multiplication routine create side channel
leakage that allows us to recover the private key in as few as 11 attempts to
access such malicious files.



Parameter Choices for LWE

Mike Hamburg

Rambus, USA

Abstract. All widely-deployed public-key encryption algorithms are threatened
by the possibility of a quantum computer that can run Shor’s algorithm. The
most popular approach for future, “post-quantum” encryption is the “learning
with errors” (LWE) problem, and its variants Ring-LWE, Module-LWE,
Integer-Module-LWE, etc. Compared to elliptic curves, LWE systems are tricky
to parameterize. The relationship between the parameters and the security they
provide is complex, and there is also the threat of attacks based on decryption
failures.

In this talk, I will cover how to choose parameters for LWE systems. I will
focus especially on how to estimate failure probabilities, and the difficulty of
attacks based on decryption failure.



IoT Insecurity – Innovation
and Incentives in Industry

Axel Y. Poschmann

DarkMatter, Abu Dhabi, United Arab Emirates

Abstract. Why is the Internet of Things going to be a security and privacy
nightmare (it is already, but we have only seen the beginning)? What does it
have to do with disruptive innovation, incentives in industry, time-to-market
trade-offs, and quantifiability? This talk—a collection of thoughts and obser-
vations, really—walks along these questions to conclude with a set of promising
research directions.



Hardware Enabled Cryptography:
Physically Unclonable Functions

and Random Numbers as Roots of Trust

Ingrid Verbauwhede

KU Leuven – COSIC
Ingrid.verbauwhede@esat.kuleuven.be

Abstract. Intelligent things, medical devices, vehicles and factories, are all part
of so-called cyber-physical systems. These systems will only be secure if we can
build devices that can perform the mathematically demanding cryptographic
protocols and algorithms in an efficient way in an embedded context. Unfor-
tunately, many of devices operate under extremely limited power, energy and
area constraints. At the same time, we request that the implementations are also
secure against a wide range of physical attacks and that keys or other sensitive
material are stored securely. Often forgotten but of utmost important are the
sources of randomness to support the cryptographic protocols and algorithms.
This will be the focus of this presentation. We will therefore focus on two roots
of trust: Physically Unclonable Functions and True Random Number generators.
We will discuss design principles and how to make them suit embedded devices.
We will explain how they can fit in FPGA or ASIC. We will also discuss
possible attacks and test strategies. We will include myths and realities and
discuss future trends for PUF and TRNGs.

Acknowledgements. This research summarizes the work of several PhD students, who are
gratefully acknowledged. The research is funded in part by the Research Council KU Leuven:
C16/15/058, and the Horizon 2020 research and innovation programs under grant agreement No
644052 HECTOR and Cathedral ERC Advanced Grant 695305.



Efficient Side Channel Testing
of Cryptographic Devices Using TVLA

(Tutorial)

Gary Kenworthy

Rambus Cryptography Research
gkenworthy@rambus.com

Abstract. Power and EM side channels are very powerful attack vectors for
cryptographic devices. Protecting against these attacks is an important design
consideration for any cryptographic implementation, and validating the effec-
tiveness of countermeasures is critical to verify their effectiveness. Whereas an
attacker has potentially unlimited time and resources to mount an attack, the
validation against such attacks must be done in an efficient and cost effective
way. Test Vector Leakage Assessment (TVLA) is a methodology that can “level
the field” and provide an objective, quantified assessment of leakage and the
protection afforded by the design. In this tutorial, we will first review the risks of
simple power analysis (SPA) and differential power analysis (DPA) and their
EM counterparts (SEMA and DEMA). The concepts behind TVLA will be
presented, with case studies and demonstrations correlating the TVLA mea-
surements with actual attacks. TVLA measurements will be demonstrated on
protected and unprotected hardware cores. Limitations and cautions of using
TVLA will also be discussed.
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