Abstract
The construction SPF, presented in Inscrypt-2016 was the first known SPN based format-preserving encryption algorithm. In this work, we significantly improve its performance and flexibility. We term this new construction as eSPF. Unlike SPF, all the basic transformations of eSPF are defined under the field \(\mathbb {F}_p\). This allows us to use a MDS matrix instead of the binary matrix used in SPF. The optimal diffusion of MDS matrix leads to an efficient and secure design. However, this change leads to violations in the message format. To mitigate this, we propose a discarding algorithm to drop the symbols that are not the elements of the format thus preserving it.
We also present a concrete instantiation of eSPF for digits and its comparison with existing FPE algorithms like FFX and SPF. The performance analysis shows that the proposed design is at least 15 times faster than FFX for most of the practical applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3_4
Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based format preserving encryption. Cryptology ePrint Archive, report 2016/794 (2016). http://eprint.iacr.org/2016/794
Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_19
Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth [23], pp. 398–409 (1994)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2
Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. (1999, unpublished manuscript)
Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_1
Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_41
Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_9
Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal, NIST. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data warehouse security. vol. PP, pp. 141–149 (1997). http://csrc.nist.gov/niccs/1997
Chang, D., Ghosh, M., Gupta, K.C., Jati, A., Kumar, A., Moon, D., Ray, I.G., Sanadhya, S.K.: SPF: a new family of efficient format-preserving encryption algorithms. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 64–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3_5
Coppersmith, D., Holloway, C., Matyas, S.M., Zunic, N.: The data encryption standard. Inf. Secur. Tech. Rep. 2(2), 22–24 (1997)
Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052343
Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier, B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000). https://doi.org/10.1007/10721064_26
Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_20
Dobraunig, C., Eichlseder, M., Mendel, F.: Square attack on 7-round Kiasu-BC. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_27
Betl Durak, F., Vaudenay, S.: Breaking the FF3 format-preserving encryption standard over small domains. Cryptology ePrint Archive, Report 2017/521 (2017). http://eprint.iacr.org/2017/521
Dworkin, M.: NIST Special Publication 800–38A: Recommendation for Block Cipher Modes of Operation-Methods and Techniques, December 2001
Dworkin, M.: Recommendation for block cipher modes of operation: methods for format-preserving encryption, NIST Special Publication, 800:38G (2016)
Granboulan, L., Levieil, É., Piret, G.: Pseudorandom permutation families over Abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_5
Gupta, K.C., Pandey, S.K., Ray, I.G.: Format preserving sets: on diffusion layers of format preserving encryption schemes. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 411–428. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_23
Helleseth, T. (ed.): EUROCRYPT 1993. LNCS, vol. 765. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7
Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_1
Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15
Lee, J.-K., Koo, B., Roh, D., Kim, W.-H., Kwon, D.: Format-preserving encryption algorithms using families of tweakable blockciphers. In: Lee, J., Kim, J. (eds.) ICISC. LNCS, vol. 8949, pp. 132–159. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15943-0_9
Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_33
Morris, B., Rogaway, P.: Sometimes-recurse shuffle. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 311–326. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_18
Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_17
Ristenpart, T., Yilek, S.: The mix-and-cut shuffle: small-domain encryption secure against N queries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 392–409. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_22
Rogaway, P.: Evaluation of some blockcipher modes of operation. http://www.cryptrec.go.jp/estimation/techrep_id2012_2.pdf
Schroeppel, R., Orman, H: The hasty pudding cipher. AES candidate submitted to NIST, pp. M1 (1998)
Sheets, J., Wagner, K.R.: Visa Format Preserving Encryption (VFPE), NIST submission (2011)
Spies, T.: Feistel finite set encryption, NIST submission, February 2008. http://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Chang, D., Ghosh, M., Jati, A., Kumar, A., Sanadhya, S.K. (2017). eSPF: A Family of Format-Preserving Encryption Algorithms Using MDS Matrices. In: Ali, S., Danger, JL., Eisenbarth, T. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2017. Lecture Notes in Computer Science(), vol 10662. Springer, Cham. https://doi.org/10.1007/978-3-319-71501-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-71501-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71500-1
Online ISBN: 978-3-319-71501-8
eBook Packages: Computer ScienceComputer Science (R0)