Abstract
Following the emergence of Kim and Barbulescu’s new number field sieve (exTNFS) algorithm at CRYPTO’16 [21] for solving discrete logarithm problem (DLP) over the finite field; pairing-based cryptography researchers are intrigued to find new parameters that confirm standard security levels against exTNFS. Recently, Barbulescu and Duquesne have suggested new parameters [3] for well-studied pairing-friendly curves i.e., Barreto-Naehrig (BN) [5], Barreto-Lynn-Scott (BLS-12) [4] and Kachisa-Schaefer-Scott (KSS-16) [19] curves at 128-bit security level (twist and sub-group attack secure). They have also concluded that in the context of Optimal-Ate pairing with their suggested parameters, BLS-12 and KSS-16 curves are more efficient choices than BN curves. Therefore, this paper selects the atypical and less studied pairing-friendly curve in literature, i.e., KSS-16 which offers quartic twist, while BN and BLS-12 curves have sextic twist. In this paper, the authors optimize Miller’s algorithm of Optimal-Ate pairing for the KSS-16 curve by deriving efficient sparse multiplication and implement them. Furthermore, this paper concentrates on the Miller’s algorithm to experimentally verify Barbulescu et al.’s estimation. The result shows that Miller’s algorithm time with the derived pseudo 8-sparse multiplication is most efficient for KSS-16 than other two curves. Therefore, this paper defends Barbulescu and Duquesne’s conclusion for 128-bit security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
6-Sparse refers the state when in a vector (multiplier/multiplicand), among the 12 coefficients 6 of them are zero..
- 2.
Pseudo 8-sparse refers to a certain length of vector’s coefficients where instead of 8 zero coefficients, there are seven 0’s and one 1 as coefficients..
- 3.
References
Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_5
Bailey, D.V., Paar, C.: Efficient arithmetic in finite field extensions with application in elliptic curve cryptography. J. Cryptol. 14(3), 153–176 (2001)
Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Cryptology ePrint Archive, Report 2017/334 (2017). http://eprint.iacr.org/2017/334
Barreto, P.S.L.M., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed embedding degrees. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 257–267. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_19
Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383_22
Benger, N., Scott, M.: Constructing tower extensions of finite fields for implementation of pairing-based cryptography. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 180–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13797-6_13
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_3
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30
Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, Boca Raton (2005)
Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_14
Devegili, A.J., O’hEigeartaigh, C., Scott, M., Dahab, R.: Multiplication and squaring on pairing-friendly fields. IACR Cryptology ePrint Archive 2006, 471 (2006)
Duquesne, S., Mrabet, N.E., Haloui, S., Rondepierre, F.: Choosing and generating parameters for low level pairing implementation on BN curves. Cryptology ePrint Archive, Report 2015/1212 (2015). http://eprint.iacr.org/2015/1212
Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23(2), 224–280 (2010)
Fuentes-Castañeda, L., Knapp, E., Rodríguez-Henríquez, F.: Faster hashing to \({\mathbb{G}}_2\). In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 412–430. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_25
Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)
Ghammam, L., Fouotsa, E.: Adequate elliptic curves for computing the product of n pairings. In: Duquesne, S., Petkova-Nikova, S. (eds.) WAIFI 2016. LNCS, vol. 10064, pp. 36–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55227-9_3
Ghammam, L., Fouotsa, E.: On the computation of the optimal ate pairing at the 192-bit security level. Cryptology ePrint Archive, Report 2016/130 (2016). http://eprint.iacr.org/2016/130
Granlund, T., the GMP development team: GNU MP: the GNU Multiple Precision Arithmetic Library, 6.1.0 edn. (2015). http://gmplib.org
Kachisa, E.J., Schaefer, E.F., Scott, M.: Constructing Brezing-Weng pairing-friendly elliptic curves using elements in the cyclotomic field. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 126–135. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85538-5_9
Khandaker, M.A.-A., Ono, H., Nogami, Y., Shirase, M., Duquesne, S.: An improvement of optimal ate pairing on KSS curve with pseudo 12-sparse multiplication. In: Hong, S., Park, J.H. (eds.) ICISC 2016. LNCS, vol. 10157, pp. 208–219. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53177-9_11
Kim, T., Barbulescu, R.: Extended tower number field sieve: a new complexity for the medium prime case. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 543–571. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_20
Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)
Mori, Y., Akagi, S., Nogami, Y., Shirase, M.: Pseudo 8–sparse multiplication for efficient ate–based pairing on Barreto–Naehrig curve. In: Cao, Z., Zhang, F. (eds.) Pairing 2013. LNCS, vol. 8365, pp. 186–198. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04873-4_11
Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11
Sakai, R.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, Okinawa, Japan, pp. 26–28, January 2000
Sakemi, Y., Nogami, Y., Okeya, K., Kato, H., Morikawa, Y.: Skew frobenius map and efficient scalar multiplication for pairing–based cryptography. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 226–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89641-8_16
Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1_6
Silverman, J.H., Cornell, G., Artin, M.: Arithmetic Geometry. Springer, Heidelberg (1986)
Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)
Weil, A., et al.: Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc. 55(5), 497–508 (1949)
Zhang, X., Lin, D.: Analysis of optimum pairing products at high security levels. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 412–430. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_24
Acknowledgments
This work was partially supported by the Strategic Information and Communications R&D Promotion Programme (SCOPE) of Ministry of Internal Affairs and Communications, Japan and The French projects ANR-16-CE39-0012 “SafeTLS” and ANR-11-LABX-0020-01 “Centre Henri Lebesgue”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Khandaker, M.AA., Nanjo, Y., Ghammam, L., Duquesne, S., Nogami, Y., Kodera, Y. (2017). Efficient Optimal Ate Pairing at 128-Bit Security Level. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-71667-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71666-4
Online ISBN: 978-3-319-71667-1
eBook Packages: Computer ScienceComputer Science (R0)