Abstract
Most Multivariate Quadratic (MQ) signature schemes have a very large public key, which makes them unsuitable for many applications, despite attractive features such as speed and small signature sizes. In this paper we introduce a modification of the Unbalanced Oil and Vinegar (UOV) signature scheme that has public keys which are an order of magnitude smaller than other MQ signature schemes. The main idea is to choose UOV keys over the smallest field \(\mathbb {F}_2\) in order to achieve small keys, but to lift the keys to a large extension field, where solving the MQ problem is harder. The resulting Lifted UOV signature scheme is very competitive with other post-quantum signature schemes in terms of key sizes, signature sizes and speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
However it is not a very good name because in reality oil mixes with oil and vinegar mixes with vinegar but no mixing happens between oil and vinegar, and this is not what happens in UOV polynomials. A better name would have been hen variables and rooster variables because hens can get along with hens and roosters, but two roosters start a fight when they appear in the same term. Moreover, this foreshadows the fact that in order for the signature scheme to be secure, the number of hen (vinegar) variables should be larger than the number of rooster (oil) variables. Nevertheless, we will stick to the traditional naming of oil and vinegar variables.
References
PQCRYPTO ICT-645622 (2015). http://pqcrypto.eu.org/
Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Ph.D. thesis, Université Pierre et Marie Curie-Paris VI (2004)
Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of solving quadratic Boolean systems. J. Complex. 29(1), 53–75 (2013)
Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15
Bettale, L., Faugere, J.C., Perret, L.: Hybrid approach for solving multivariate systems over finite fields. J. Math. Cryptol. 3(3), 177–197 (2009)
Bettale, L., Faugère, J.C., Perret, L.: Solving polynomial systems over finite fields: improved analysis of the hybrid approach. In: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, pp. 67–74. ACM (2012)
Bouillaguet, C., Chen, H.-C., Cheng, C.-M., Chou, T., Niederhagen, R., Shamir, A., Yang, B.-Y.: Fast exhaustive search for polynomial systems in \({\mathbb{F}_2}\). In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 203–218. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_14
Diem, C.: The XL-algorithm and a conjecture from commutative algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2_23
Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_15
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_3
Faugère, J.C., Perret, L.: On the security of UOV. IACR Cryptology ePrint Archive 2009, 483 (2009)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM symposium on Theory of Computing, pp. 212–219. ACM (1996)
Joux, A., Vitse, V.: A crossbred algorithm for solving Boolean polynomial systems. IACR Cryptology ePrint Archive 2017, 372 (2017)
Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15
Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055733
Kravitz, D.W.: Digital signature algorithm, US Patent 5,231,668, 27 July 1993
Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Free. Co., San Francisco (1979)
National Institute for Standards and Technology (NIST): Post-quantum crypto standardization (2016). http://csrc.nist.gov/groups/ST/post-quantum-crypto/
Patarin, J.: The oil and vinegar signature scheme. In: 1997 Dagstuhl Workshop on Cryptography (1997)
Petzoldt, A.: Hybrid approach for the fast verification for improved versions of the UOV and Rainbow signature schemes. IACR Cryptology ePrint Archive 2013, 315 (2013)
Petzoldt, A.: Selecting and Reducing Key Sizes for Multivariate Cryptography. Ph.D. thesis, TU Darmstadt, referenten: Professor Dr. Johannes Buchmann, Professor Jintai Ding, Ph.D, July 2013
Petzoldt, A., Chen, M.-S., Ding, J., Yang, B.-Y.: HMFEv - an efficient multivariate signature scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 205–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_12
Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_14
Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, p. 289. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1_68
Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_10
Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60(4), 2746 (1999)
Acknowledgements
This work was supported in part by the Research Council KU Leuven: C16/15/058. In addition, this work was supported by the European Commission through the Horizon 2020 research and innovation programme under grant agreement No. H2020-ICT-2014-644371 WITDOM and H2020-ICT-2014-645622 PQCRYPTO.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Beullens, W., Preneel, B. (2017). Field Lifting for Smaller UOV Public Keys. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-71667-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71666-4
Online ISBN: 978-3-319-71667-1
eBook Packages: Computer ScienceComputer Science (R0)