Abstract
In this paper we propose a new method to hide the structure of Gabidulin codes for cryptographic applications. At the difference of previous cryptosystems based on Gabidulin codes, we do not try to mask the structure of Gabidulin codes by the use of some distortion methods, but we consider matrix codes obtained from subcodes of binary images of Gabidulin codes. This allows us to remove the properties related to multiplication in the extension field. In particular, this prevents the use of Frobenius for cryptanalysis. Thus, Overbeck’s attack can no longer be applied. In practice we obtain public key with a gain of a factor of order ten compared to the classical Goppa-McEliece scheme with still a small cipher text of order only 1 kbits, better than recent cryptosystems for which the cipher text size is of order 10 kbits. Several results used and proved in the paper are of independent interest: results on structural properties of Gabidulin matrix codes and hardness of deciding whether a code is equivalent to a subcode of a matrix code.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar Melchor, C., Blazy, O., Deneuville, J.-C., Gaborit, P., Zémor, G.: Efficient encryption from random quasi-cyclic codes. CoRR abs/1612.05572 (2016). http://arxiv.org/abs/1612.05572
Alekhnovich, M.: More on average case vs approximation complexity. In: Proceedings of the 44th Symposium on Foundations of Computer Science (FOCS 2003), Cambridge, MA, USA, 11–14 October 2003, pp. 298–307 (2003)
Berger, T.P.: Isometries for rank distance and permutation group of Gabidulin codes. IEEE Trans. Inf. Theory 49(11), 3016–3019 (2003)
Berger, T.P., El Amrani, N.: Codes over \(\cal{L}(GF(2)^m,GF(2)^m)\), MDS diffusion matrices and cryptographic applications. In: El Hajji, S., Nitaj, A., Carlet, C., Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 197–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18681-8_16
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6
Berger, T.P., Gueye, C.T., Klamti, J.B.: A NP-complete problem in coding theory with application to code based cryptography. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 230–237. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55589-8_15
Berger, T.P., Loidreau, P.: Designing an efficient and secure public-key cryptosystem based on reducible rank codes. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30556-9_18
Bogart, K.P., Goldberg, D., Gordon, J.: An elementary proof of the MacWilliams theorem on equivalence of codes. Inf. Control 37, 19–22 (1978)
Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.-P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014)
Delsarte, P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978)
Faugère, J.-C., Safey El Din, M., Spaenlehauer, P.-J.: Gröbner bases of Bihomogeneous ideals generated by polynomials of bidegree (1,1): algorithms and complexity. J. Symb. Comput. 46(4), 406–437 (2011)
Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. (English translation of Problemy Peredachi Informatsii) 21(1), 1–71 (1985)
Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-commutative ring and their application in cryptology. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-6_41
Gabidulin, E., Rashwan, H., Honary, B.: On improving security of GPT cryptosystems. In: 2009 IEEE International Symposium on Information Theory Proceedings (ISIT), ISIT 2009, pp. 1110–1114 (2009)
Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low rank parity check codes and their application to cryptography. In: Proceedings of the Workshop on Coding and Cryptography, WCC 2013, Bergen, Norway (2013). www.selmer.uib.no/WCC2013/pdfs/Gaborit.pdf
Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decoding problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)
Huffman, W.C.: Groups and codes. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory. Elsevier, Amsterdam (1998). Chap. 17
Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_1
MacWilliams F.J.: Combinatorial properties of elementary Abelian groups Ph.D. thesis, Radcliffe College (1962)
McEliece, R.: A public-key cryptosystem based on algebraic coding theory. In: DSN Program Report, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, pp. 114–116, January 1978
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24
Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.: MDPC-McEliece: new McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory, ISIT 2013, pp. 2069–2073. IEEE (2013)
Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved cryptanalysis of rank metric schemes based on Gabidulin codes. CoRR abs/1602.08549 (2016)
Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005). https://doi.org/10.1007/11554868_5
Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin codes. J. Cryptol. 21(2), 280–301 (2008)
Rashwan, H., Honary, B., Gabidulin, E.M.: On improving security of GPT cryptosystems. In: IEEE International Symposium on Information Theory, ISIT 2009, pp. 1110–1114. IEEE (2009)
Roth, R.M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Berger, T.P., Gaborit, P., Ruatta, O. (2017). Gabidulin Matrix Codes and Their Application to Small Ciphertext Size Cryptosystems. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-71667-1_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71666-4
Online ISBN: 978-3-319-71667-1
eBook Packages: Computer ScienceComputer Science (R0)