Skip to main content

Lightweight Design Choices for LED-like Block Ciphers

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2017 (INDOCRYPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10698))

Included in the following conference series:

Abstract

Serial matrices are a preferred choice for building diffusion layers of lightweight block ciphers as one just needs to implement the last row of such a matrix. In this work we analyze a new class of serial matrices which are the lightest possible \(4 \times 4\) serial matrix that can be used to build diffusion layers. With this new matrix we show that block ciphers like LED can be implemented with a reduced area in hardware designs, though it has to be cycled for more iterations. Further, we suggest the usage of an alternative S-box to the standard S-box used in LED with similar cryptographic robustness, albeit having lesser area footprint. Finally, we combine these ideas in an end-end FPGA based prototype of LED. We show that with these optimizations, there is a reduction of \(16\% \) in area footprint of one round implementation of LED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The term “perfect diffusion layer” was coined by Vaudenay in [22] wherein he suggested for the first time that MDS matrices can be used to design linear diffusion layers.

References

  1. Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS diffusion layers for block ciphers and hash functions. In: 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1551–1555. IEEE (2013)

    Google Scholar 

  2. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 3–17. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_1

    Google Scholar 

  3. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  4. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Kneževic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: PRINCE - a low-latency block cipher for pervasive computing applications (Full version). Cryptology ePrint Archive, Report 2012/529 (2012). http://eprint.iacr.org/

  5. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  6. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_22

    Chapter  Google Scholar 

  8. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: On the direct construction of recursive MDS matrices. Des. Codes Crypt. 82(1–2), 77–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gupta, K.C., Pandey, S.K., Venkateswarlu, A.: Towards a general construction of recursive MDS diffusion layers. Des. Codes Crypt. 82(1–2), 179–195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gupta, K.C., Ray, I.G.: On constructions of MDS matrices from companion matrices for lightweight cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 29–43. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40588-4_3

    Chapter  Google Scholar 

  11. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: Searching for hardware-optimal SPN structures and components with a fair comparison. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 433–450. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3_24

    Google Scholar 

  12. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 101–120. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_6

    Chapter  Google Scholar 

  13. Macwilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes (North-Holland Mathematical Library). North Holland, January 1983

    Google Scholar 

  14. McKay, K.A., Bassham, L., Turan, M.S., Mouha, N.: NISTIR 8114, Report on Lightweight Cryptography (2017). http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf

  15. Picek, S., Batina, L., Jakobović, D., Ege, B., Golub, M.: S-box, SET, match: A toolbox for S-box analysis. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501, pp. 140–149. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-8_10

    Google Scholar 

  16. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 385–401. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_22

    Chapter  Google Scholar 

  17. Sarkar, S., Sim, S.M.: A deeper understanding of the XOR count distribution in the context of lightweight cryptography. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_9

    Chapter  Google Scholar 

  18. Sarkar, S., Syed, H.: Lightweight diffusion layer: Importance of toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)

    Google Scholar 

  19. Sarkar, S., Syed, H.: Analysis of toeplitz MDS matrices. Cryptology ePrint Archive, Report 2017/368 (2017). http://eprint.iacr.org/2017/368

  20. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_12

    Chapter  Google Scholar 

  21. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 471–493. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_23

    Chapter  Google Scholar 

  22. Vaudenay, S.: On the need for multipermutations: Cryptanalysis of MD4 and SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_22

    Chapter  Google Scholar 

  23. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (Lightweight) block ciphers and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, S., Syed, H., Sadhukhan, R., Mukhopadhyay, D. (2017). Lightweight Design Choices for LED-like Block Ciphers. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71667-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71666-4

  • Online ISBN: 978-3-319-71667-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics