Abstract
Nachef et al. used differential cryptanalysis to study four types of Generalized Feistel Scheme (GFS). They gave the lower bound of maximum number of rounds that is indistinguishable from a random permutation. In this paper, we study the security of several types of GFS by exploiting the asymmetric property. We show that better lower bounds can be achieved for the Type-1 GFS, Type-3 GFS and Alternating Feistel Scheme. Furthermore, we give the first general results regarding to the lower bound of the Unbalanced Feistel Scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We also examine Type-2 Feistel Scheme, but we cannot improve the previous results since it does not have asymmetric property.
- 2.
The full version will be uploaded to Cryptology ePrint archive soon.
References
Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_48
Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3_4
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak Sponge Function Family Main Document. Submission to NIST (Round 2) (2009)
Biham, E., Biryukov, A., Dunkelman, O., Richardson, E., Shamir, A.: Initial observations on skipjack: cryptanalysis of skipjack-3XOR. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 362–375. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8_27
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2
Gueron, S., Mouha, N.: Simpira v2: a family of efficient permutations using the AES round function. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 95–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_4
Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_33
Jutla, C.S.: Generalized birthday attacks on unbalanced Feistel networks. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 186–199. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055728
Knudsen, L.: DEAL - a 128-bit block cipher. In: NIST AES Proposal (1998)
Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 447–447. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_34
Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 189–203. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_53
Nachef, V., Volte, E., Patarin, J.: Differential attacks on generalized Feistel schemes. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 1–19. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02937-5_1
Nyberg, K.: Generalized Feistel networks. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034838
Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_14
Patarin, J.: Security of random feistel schemes with 5 or more rounds. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_7
Patarin, J.: Security of Balanced and Unbalanced Feistel Schemes with Linear Non Equalities. Cryptology ePrint Archive, Report 2010/293 (2010). http://eprint.iacr.org/2010/293
Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced feistel schemes with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 396–411. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_26
Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes with expanding functions. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_20
Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_49
Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockcipher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_12
Tjuawinata, I., Huang, T., Wu, H.: Cryptanalysis of simpira v2. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp. 384–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0_20
Treger, J., Patarin, J.: Generic attacks on feistel networks with internal permutations. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 41–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_4
Volte, E., Nachef, V., Patarin, J.: Improved generic attacks on unbalanced feistel schemes with expanding functions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 94–111. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_6
Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers provably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_42
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Expected Value and Variance of Random Variables Concerning Type-1 Feistel Scheme and UFN(\(k',k\)) When \(k'\) Divides k.
The following table summarises the expected value and variance of the random variables used in the analysis of Type-1 Feistel Schemes.
The next table summarises the expected values and variances for random variables used in the analysis of UFN(\(k',k\)) when \(k'\) divides k.
B Distinguishability Table for UFN(\(k',k\))
The following tables contain the summary of distinguishability of UFN(\(k',k\)) from a random permutation.
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Tjuawinata, I., Huang, T., Wu, H. (2017). Improved Differential Cryptanalysis on Generalized Feistel Schemes. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-71667-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71666-4
Online ISBN: 978-3-319-71667-1
eBook Packages: Computer ScienceComputer Science (R0)