Abstract
Garbled circuits have been highly optimized for practice over the last several years. Today’s most efficient constructions treat different types of gates (e.g., AND vs. XOR) differently; as such, they leak the type of each gate. In many applications of garbled circuits, the circuit itself is public, so such leakage is tolerable. In other settings, however, it is desirable to hide the type of each gate.
In this paper we consider optimizing garbled circuits for the gate-hiding case. We observe that the best state-of-the-art constructions support only a limited class of gate functions, which turns out to undermine their improvements in several settings. These state-of-the-art constructions also require a non-minimal hardness assumption.
We introduce two new gate-hiding constructions of garbled circuits. Both constructions achieve the same communication complexity as the best state-of-the-art schemes, but support a more useful class of boolean gates and use only the minimal assumption of a secure PRF.
Partially supported by NSF awards 1149647 & 1617197.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The “extra” 4 bits come from using the point-permute optimization. In practice one would typically use the underlying cryptographic primitive (e.g., AES) in a way that gives security \(\lambda =127\), and then the garbled gates become a clean multiple of 128 bits in length. All of the constructions in this work use the point-permute optimization, which we discuss in greater detail in Sect. 2.4.
- 2.
KKS also show how to reduce the size of garbled gates at the input layer of a circuit. In this work we focus on internal gates of a circuit, and assume that the input gates represent only a small fraction of the circuit.
- 3.
In this paper we restrict our attention to constructions based on symmetric-key primitives only. There exist garbled circuit constructions based on very expensive primitives (functional encryption, FHE) where the cost of every garbled gate is constant.
- 4.
Absorbing the NOT gate into its “upstream” gate may not always work, since the upstream gate may have multiple fan-out.
- 5.
This fact is explicitly mentioned in [7].
- 6.
If all the coefficients were to be made public, then we are back in the original situation of [7], and leaking the parity of the gate seems inevitable for this choice of evaluation equation.
References
Abadi, M., Feigenbaum, J.: Secure circuit evaluation. J. Cryptol. 2(1), 1–12 (1990)
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990
Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a fixed-key blockcipher. In: 2013 IEEE Symposium on Security and Privacy, pp. 478–492. IEEE Computer Society Press, May 2013
Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press, October 2012
Bellare, M., Lysyanskaya, A.: Symmetric and dual PRFs from standard assumptions: a generic validation of an HMAC assumption. Cryptology ePrint Archive, Report 2015/1198 (2015). http://eprint.iacr.org/2015/1198
Choi, S.G., Katz, J., Kumaresan, R., Zhou, H.-S.: On the security of the “Free-XOR” technique. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 39–53. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_3
Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard assumptions. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 567–578. ACM Press, October 2015
Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. Cryptology ePrint Archive, Report 2017/798 (2017). http://eprint.iacr.org/2017/798
Henecka, W., Schneider, T.: Memory efficient secure function evaluation. https://code.google.com/p/me-sfe/
Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 556–571. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_30
Kempka, C., Kikuchi, R., Suzuki, K.: How to circumvent the two-ciphertext lower bound for linear garbling schemes. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 967–997. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_32
Kennedy, W.S., Kolesnikov, V., Wilfong, G.: Overlaying circuit clauses for secure computation. Cryptology ePrint Archive, Report 2016/685 (2016). http://eprint.iacr.org/2016/685
Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_27
Kolesnikov, V., Mohassel, P., Rosulek, M.: FleXOR: flexible garbling for XOR gates that beats free-XOR. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 440–457. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_25
Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3_40
Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)
Lipmaa, H., Mohassel, P., Sadeghian, S.: Valiant’s universal circuit: improvements, implementation, and applications. Cryptology ePrint Archive, Report 2016/017 (2016). http://eprint.iacr.org/2016/017
Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_33
Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 129–139. ACM, New York (1999)
Paus, A., Sadeghi, A.-R., Schneider, T.: Practical secure evaluation of semi-private functions. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 89–106. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01957-9_6
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15
Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K., Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th Annual ACM Symposium on Theory of Computing, Hershey, Pennsylvania, USA, pp. 196–203. ACM, 3–5 May 1976
Wang, Y., Malluhi, Q.: Reducing garbled circuit size while preserving circuit gate privacy. Cryptology ePrint Archive, Report 2017/041 (2017). http://eprint.iacr.org/2017/041
Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press, November 1982
Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_8
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rosulek, M. (2017). Improvements for Gate-Hiding Garbled Circuits. In: Patra, A., Smart, N. (eds) Progress in Cryptology – INDOCRYPT 2017. INDOCRYPT 2017. Lecture Notes in Computer Science(), vol 10698. Springer, Cham. https://doi.org/10.1007/978-3-319-71667-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-71667-1_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71666-4
Online ISBN: 978-3-319-71667-1
eBook Packages: Computer ScienceComputer Science (R0)