Skip to main content

Algebra of Harmony: Transformations of Just Consonances

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10527))

Included in the following conference series:

  • 1238 Accesses

Abstract

The paper focuses on mathematical aspects of harmonies in extended just intonation and their relations. The first part lays down a theoretical framework for the investigation of structural features of such harmonies. Among other aspects, it addresses symmetry, inversion, and multiplication of harmonies. The second part explores transformational relations among harmonies of the same type, while the approach is intrinsically dualistic. Riemann-Klumpenhouwer’s concepts of Schritts and Wechsels are generalized for ‘harmony spaces’ in extended just intonation. This enables a deeper analysis of harmonic ‘neighborhoods.’ Finally, a graphical representation of the complete neighborhood of a harmony, called ‘neighborhood network,’ is presented along with several simpler and more complex examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barker, A.: Greek Musical Writings II - Harmonic and Acoustic Theory. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  2. Cohn, R.: Introduction to neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–80 (1998)

    Article  Google Scholar 

  3. Daniélou, A.: Introduction to the Study of Musical Scales. The India Society, London (1943)

    Google Scholar 

  4. Euler, L.: Tentamen novae theoriae musicae. St. Petersburg (1739)

    Google Scholar 

  5. Fokker, A.D.: Selections from the harmonic lattice of perfect fifths and major thirds containing 12, 19, 22, 31, 41 or 53 notes. In: Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Series B, vol. 71, pp. 251–266 (1968)

    Google Scholar 

  6. Gollin, E.: Some aspects of three-dimensional tonnetze. J. Music Theory 42(2), 195–206 (1998)

    Article  Google Scholar 

  7. Gollin, E., Rehding, A. (eds.): The Oxford Handbook of neo-Riemannian Music Theories. Oxford University Press, New York (2011)

    Google Scholar 

  8. Huygens, C.: Le cycle harmonique (Rotterdam 1691), Novus cyclus harmonicus (Leiden 1724) - with Dutch and English Translations. Diapason Press, Utrecht (1986). Edited by Rasch, R

    Google Scholar 

  9. Johnston, B.: Scalar order as a compositional resource. Perspect. New Music 2(2), 56–76 (1964)

    Article  Google Scholar 

  10. Johnston, B.: On String quartet No. 5. In: Gilmore, B. (ed.) Maximum Clarity and Other Writings on Music, p. 203. University of Illinois Press, Illinois (2006)

    Google Scholar 

  11. Klumpenhouwer, H.: Some remarks on the use of Riemann transformations. Music Theory Online 0.9 (1994)

    Google Scholar 

  12. Meyer, M.F.: The Musician’s Arithmetic. Oliver Ditson Company, Boston (1929)

    Google Scholar 

  13. von Oettingen, A.: Das duale Harmoniesystem. C.F.W. Siegel’s Musikalienhandlung, Leipzig (1913)

    Google Scholar 

  14. Opelt, W.: Ueber die Natur der Musik: Ein vorläufiger Auszug aus der Bereits auf Unterzeichnung angekündigten Algemeinen Theorie der Musik. Hermann und Langbein, Leipzig (1834)

    Google Scholar 

  15. Partch, H.: Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, 2nd edn. Da Capo Press, New York (1974)

    Google Scholar 

  16. Penrose, R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)

    Google Scholar 

  17. Riemann, H.: Katechismus der Akustik (Musikwissenschaft). Max Hesse, Leipzig (1891)

    Google Scholar 

  18. Tanaka, S.: Studien im Gebiete der reinen Stimmung. In: Chrysander, F., et al. (eds.) Vierteljahrsschrift für Musikwissenschaft, pp. 1–90. Breitkopf und Härtel, Leipzig (1890)

    Google Scholar 

  19. Thompson, T.P.: Theory and Practice of Just Intonation: With a View to the Abolition of Temperament. Effingham Wilson, London (1850)

    Google Scholar 

  20. Vicentino, N.: L’antica musica ridotta alla moderna prattica. Antonio Barre, Rome (1557)

    Google Scholar 

  21. Würschmidt, J.: Logarithmische und graphische Darstellung der musikalischen Intervalle. Zeitschrift für Physik 3(2), 89–97 (1920)

    Article  Google Scholar 

  22. Yasser, J.: A Theory of Evolving Tonality. American Library of Musicology, New York (1932)

    Google Scholar 

Download references

Acknowledgement

This paper was supported by the scientific grant agency VEGA through the grant no. 1/0637/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Žabka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žabka, M. (2017). Algebra of Harmony: Transformations of Just Consonances. In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71827-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71826-2

  • Online ISBN: 978-3-319-71827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics