Abstract
The paper focuses on mathematical aspects of harmonies in extended just intonation and their relations. The first part lays down a theoretical framework for the investigation of structural features of such harmonies. Among other aspects, it addresses symmetry, inversion, and multiplication of harmonies. The second part explores transformational relations among harmonies of the same type, while the approach is intrinsically dualistic. Riemann-Klumpenhouwer’s concepts of Schritts and Wechsels are generalized for ‘harmony spaces’ in extended just intonation. This enables a deeper analysis of harmonic ‘neighborhoods.’ Finally, a graphical representation of the complete neighborhood of a harmony, called ‘neighborhood network,’ is presented along with several simpler and more complex examples.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barker, A.: Greek Musical Writings II - Harmonic and Acoustic Theory. Cambridge University Press, Cambridge (1989)
Cohn, R.: Introduction to neo-Riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–80 (1998)
Daniélou, A.: Introduction to the Study of Musical Scales. The India Society, London (1943)
Euler, L.: Tentamen novae theoriae musicae. St. Petersburg (1739)
Fokker, A.D.: Selections from the harmonic lattice of perfect fifths and major thirds containing 12, 19, 22, 31, 41 or 53 notes. In: Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen, Series B, vol. 71, pp. 251–266 (1968)
Gollin, E.: Some aspects of three-dimensional tonnetze. J. Music Theory 42(2), 195–206 (1998)
Gollin, E., Rehding, A. (eds.): The Oxford Handbook of neo-Riemannian Music Theories. Oxford University Press, New York (2011)
Huygens, C.: Le cycle harmonique (Rotterdam 1691), Novus cyclus harmonicus (Leiden 1724) - with Dutch and English Translations. Diapason Press, Utrecht (1986). Edited by Rasch, R
Johnston, B.: Scalar order as a compositional resource. Perspect. New Music 2(2), 56–76 (1964)
Johnston, B.: On String quartet No. 5. In: Gilmore, B. (ed.) Maximum Clarity and Other Writings on Music, p. 203. University of Illinois Press, Illinois (2006)
Klumpenhouwer, H.: Some remarks on the use of Riemann transformations. Music Theory Online 0.9 (1994)
Meyer, M.F.: The Musician’s Arithmetic. Oliver Ditson Company, Boston (1929)
von Oettingen, A.: Das duale Harmoniesystem. C.F.W. Siegel’s Musikalienhandlung, Leipzig (1913)
Opelt, W.: Ueber die Natur der Musik: Ein vorläufiger Auszug aus der Bereits auf Unterzeichnung angekündigten Algemeinen Theorie der Musik. Hermann und Langbein, Leipzig (1834)
Partch, H.: Genesis of a Music: An Account of a Creative Work, Its Roots, and Its Fulfillments, 2nd edn. Da Capo Press, New York (1974)
Penrose, R.: The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 10, 266–271 (1974)
Riemann, H.: Katechismus der Akustik (Musikwissenschaft). Max Hesse, Leipzig (1891)
Tanaka, S.: Studien im Gebiete der reinen Stimmung. In: Chrysander, F., et al. (eds.) Vierteljahrsschrift für Musikwissenschaft, pp. 1–90. Breitkopf und Härtel, Leipzig (1890)
Thompson, T.P.: Theory and Practice of Just Intonation: With a View to the Abolition of Temperament. Effingham Wilson, London (1850)
Vicentino, N.: L’antica musica ridotta alla moderna prattica. Antonio Barre, Rome (1557)
Würschmidt, J.: Logarithmische und graphische Darstellung der musikalischen Intervalle. Zeitschrift für Physik 3(2), 89–97 (1920)
Yasser, J.: A Theory of Evolving Tonality. American Library of Musicology, New York (1932)
Acknowledgement
This paper was supported by the scientific grant agency VEGA through the grant no. 1/0637/15.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Žabka, M. (2017). Algebra of Harmony: Transformations of Just Consonances. In: Agustín-Aquino, O., Lluis-Puebla, E., Montiel, M. (eds) Mathematics and Computation in Music. MCM 2017. Lecture Notes in Computer Science(), vol 10527. Springer, Cham. https://doi.org/10.1007/978-3-319-71827-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-71827-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71826-2
Online ISBN: 978-3-319-71827-9
eBook Packages: Computer ScienceComputer Science (R0)