Skip to main content

Locally Semicomplete Digraphs and Generalizations

  • Chapter
  • First Online:
Classes of Directed Graphs

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

The class of locally semicomplete digraphs was discovered by Bang-Jensen in 1988. Locally semicomplete digraphs form a significant generalization of semicomplete digraphs with a very rich structure. The class contains digraphs, such as directed cycles, that are very far from being semicomplete. Yet a large number of classical results for semicomplete digraphs still hold for locally semicomplete digraphs. Two examples are that every connected locally semicomplete digraph is traceable and every strongly connected locally semicomplete digraph has a hamiltonian cycle. Since Bang-Jensen’s paper (J. Graph Theory, 14(3):371–390, 1990, [9]) was published in 1990 there has been a significant amount of research done on the class including several PhD theses. In this chapter we survey a number of important results, both structural and algorithmic, on locally semicomplete digraphs and illustrate various important proof-techniques. Several of the results hold even for some superclasses of locally semicomplete digraphs. Many of the proofs and algorithms rely on a structural characterization of those locally semicomplete digraphs that are not semicomplete (have independence number at least 2). As it turns out, these digraphs fall in two disjoint classes, called round decomposable and evil locally semicomplete digraphs, respectively. The first of these has a structure which allows many problems to be solved efficiently, whereas the second class, the evil locally semicomplete digraphs, has a structure which is much closer to that of semicomplete digraphs and hence requires much more work for many problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also called the square.

  2. 2.

    The reduction also works when some numbers may be equal, in which case we obtain a semicomplete digraph instead.

  3. 3.

    This is not necessarily true if there are 2-cycles.

  4. 4.

    They used the name positive round instead of out-round.

References

  1. N. Alon, D. Lokshtanov, and S. Saurabh. Fast FAST. In ICALP 2009: 36th International Colloquium on Automata, Languages and Programming, Part I, volume 5555 of Lect. Notes Comput. Sci., pages 49–58, 2009.

    Google Scholar 

  2. B. Alspach and C. Tabib. A note on the number of \(4\)-circuits in a tournament. In Theory and practice of combinatorics, volume 60 of North-Holland Math. Stud., pages 13–19. North-Holland, Amsterdam, 1982.

    Google Scholar 

  3. J. Bang-Jensen. A reformulation of Huang’s structure theorem for local tournaments with some consequences. Technical report 13, Department of Mathematics and Computer Science, Odense University, Denmark, 1994.

    Google Scholar 

  4. J. Bang-Jensen. Digraphs with the path-merging property. J. Graph Theory, 20(2):255–265, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bang-Jensen. Disjoint paths with prescribed ends and cycles through given arcs in locally semicomplete digraphs and quasi-transitive digraphs. Technical Report 22, Department of Mathematics and Computer Science, Odense University, Denmark, 1996.

    Google Scholar 

  6. J. Bang-Jensen. Edge-disjoint in- and out-branchings in tournaments and related path problems. J. Combin. Theory Ser. B, 51(1):1–23, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bang-Jensen. \(k\)-strong spanning local tournaments in locally semicomplete digraphs. Discrete Appl. Math., 157(11):2536–2540, 2009.

    MathSciNet  MATH  Google Scholar 

  8. J. Bang-Jensen. Linkages in locally semicomplete digraphs and quasi-transitive digraphs. Discrete Math., 196(1-3):13–27, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bang-Jensen. Locally semicomplete digraphs: a generalization of tournaments. J. Graph Theory, 14(3):371–390, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bang-Jensen. On the structure of locally semicomplete digraphs. Discrete Math., 100(1-3):243–265, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bang-Jensen, T. M. Christiansen, and A. Maddaloni. Disjoint paths in decomposable digraphs. J. Graph Theory, 85:545–567, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bang-Jensen and Y. Guo. A note on vertex pancyclic oriented graphs. J. Graph Theory, 31:313–318, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bang-Jensen, Y. Guo, G. Gutin, and L. Volkmann. A classification of locally semicomplete digraphs. Discrete Math., 167/168:101–114, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Bang-Jensen, Y. Guo, and L. Volkmann. Weakly Hamiltonian-connected locally semicomplete digraphs. J. Graph Theory, 21(2):163–172, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2000.

    MATH  Google Scholar 

  16. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2nd edition, 2009.

    MATH  Google Scholar 

  17. J. Bang-Jensen and G. Gutin. Generalizations of tournaments: A survey. J. Graph Theory, 28:171–202, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Bang-Jensen, G. Gutin, and H. Li. Sufficient conditions for a digraph to be Hamiltonian. J. Graph Theory, 22(2):181–187, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Bang-Jensen, G. Gutin, and A. Yeo. Steiner type problems for digraphs that are locally semicomplete or extended semicomplete. J. Graph Theory, 44(3):193–207, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Bang-Jensen and P. Hell. Fast algorithms for finding Hamiltonian paths and cycles in in-tournament digraphs. Discrete Appl. Math., 41(1):75–79, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Bang-Jensen, P. Hell, and G. MacGillivray. The complexity of colouring by semicomplete digraphs. SIAM J. Discrete Math., 1(3):281–298, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Bang-Jensen and J. Huang. Arc-disjoint in- and out-branchings with the same root in locally semicomplete digraphs. J. Graph Theory, 77(4):278–298, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Bang-Jensen and J. Huang. Decomposing locally semicomplete digraphs into strong spanning subdigraphs. J. Combin. Theory Ser. B, 102:701–714, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Bang-Jensen, J. Huang, and E. Prisner. In-tournament digraphs. J. Combin. Theory Ser. B, 59(2):267–287, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Bang-Jensen, J. Huang, and A. Yeo. Strongly connected spanning subgraphs with the minimum number of arcs in quasi-transitive digraphs. SIAM J. Discrete Math., 16:335–343, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Bang-Jensen and A. Maddaloni. Arc-disjoint paths in decomposable digraphs. J. Graph Theory, 77(2):89–110, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Bang-Jensen, A. Maddaloni, and S. Saurabh. Algorithms and kernels for feedback set problems in generalizations of tournaments. Algorithmica, 76(2):320–343, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Bang-Jensen and M.H. Nielsen. Finding complementary cycles in locally semicomplete digraphs. Discrete Appl. Math., 146(3):245–256, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph problem for extended semicomplete digraphs and semicomplete bipartite digraphs. J. Algor., 41(1):1–19, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Bang-Jensen and A. Yeo. The minimum spanning strong subdigraph problem is fixed parameter tractable. Discrete Appl. Math., 156:2924–2929, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  31. C. Berge. Graphs. North-Holland, Amsterdam, 1985. Second revised edition of part 1 of the 1973 English version.

    Google Scholar 

  32. C. Berge and A.R. Rao. A combinatorial problem in logic. Discrete Math., 17:23–26, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Bessy and S. Thomassé. Every strong digraph has a spanning strong subgraph with at most \(n+2\alpha -2\) arcs. J. Combin. Theory Ser. B, 87(2):289–299, 2003.

    MathSciNet  MATH  Google Scholar 

  34. J.A. Bondy. Short proofs of classical theorems. J. Graph Theory, 44(3):159–165, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  35. V. Chvátal and L. Lovász. Every directed graph has a semi-kernel. Lect. Notes Math., 411:175, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  36. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

    MATH  Google Scholar 

  37. A. Cuzzocrea, D. Taniar, S. Bessy, F. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé. Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci., 77(6):1071–1078, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Even, J. Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Feldman and M. Ruhl. The directed Steiner network problem is tractable for a constant number of terminals. In FOCS 1999: 40th Annual Symposium on Foundations of Computer Science, pages 299–308. IEEE Computer Society Press, 1999.

    Google Scholar 

  40. H. Galeana-Sánchez and M. Olsen. A characterization of locally semicomplete CKI-digraphs. Graphs Combin., 32(5):1873–1879, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  41. M.R. Garey and D.S. Johnson. Computers and intractability. W. H. Freeman, San Francisco, 1979.

    MATH  Google Scholar 

  42. R. Gould and Y. Guo. Locally semicomplete digraphs with a factor composed of \(k\) cycles. J. Korean Math. Soc., 41:895–912, 2004.

    MathSciNet  MATH  Google Scholar 

  43. Y. Guo. Locally semicomplete digraphs. PhD thesis, RWTH Aachen, Germany, 1995.

    Google Scholar 

  44. Y. Guo. Spanning local tournaments in locally semicomplete digraphs. Discrete Appl. Math., 79(1-3):119–125, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Guo. Strongly Hamiltonian-connected locally semicomplete digraphs. J. Graph Theory, 22(1):65–73, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Guo and L. Volkmann. Locally semicomplete digraphs that are complementary \(m\)-pancyclic. J. Graph Theory, 21(2):121–136, 1996.

    MathSciNet  MATH  Google Scholar 

  47. Y. Guo and L. Volkmann. On complementary cycles in locally semicomplete digraphs. Discrete Math., 135(1-3):121–127, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Guo and L. Volkmann. Pancyclic locally semicomplete digraphs. Unpublished manuscript, 1992.

    Google Scholar 

  49. G. Gutin, K.M. Koh, E.G. Tay, and A. Yeo. On the number of quasi-kernels in digraphs. J. Graph Theory, 46(1):48–56, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  50. G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter. Discrete Appl. Math., 121(1-3):129–138, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. Heard and J. Huang. Disjoint quasi-kernels in digraphs. J. Graph Theory, 58(3):251–260, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  52. G.R.T. Hendry. Extending cycles in directed graphs. J. Combin. Theory Ser. B, 46(2):162–172, 1989.

    Article  MathSciNet  Google Scholar 

  53. J. Huang. A note on spanning local tournaments in locally semicomplete digraphs. Discrete Appl. Math., 89:277–279, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Huang. On the structure of local tournaments. J. Combin. Theory, Ser. B, 63(2):200–221, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Huang. Tournament-like oriented graphs. PhD thesis, School of Computing Science, Simon Fraser University, Canada, 1992.

    Google Scholar 

  56. J. Huang. Which digraphs are round? Australas. J. Combin., 19:203–208, 1999.

    MathSciNet  MATH  Google Scholar 

  57. R. Li. \(k\)-ordered Graphs and Out-arc Pancyclicity of Digraphs. PhD thesis, Fakultät Für Mathematik, Informatik und Naturwissenschaften, RWTH Aachen, Germany, 2009.

    Google Scholar 

  58. R. Li and T. Han. Arc-disjoint hamiltonian cycles in round decomposable locally semicomplete digraphs. Discuss. Math. Graph Theory, 340:2916–2924, 2017.

    MATH  Google Scholar 

  59. R. Li, X. Zhang, and W. Meng. A sufficient condition for a digraph to be positive round. Optimization, 57:345–352, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Meierling. Solution of a conjecture of Tewes and Volkmann regarding extendable cycles in in-tournaments. J. Graph Theory, 63(1):82–92, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Meierling and L. Volkmann. All 2-connected in-tournaments that are cycle complementary. Discrete Math., 308:2115–2133, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  62. W. Meng, S. Li, Y. Guo, and G. Xu. A local tournament contains a vertex whose out-arcs are pseudo-girth-pancyclic. J. Graph Theory, 62(4):346–361, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  63. H. Meyniel. Une condition suffisante d’existence d’un circuit hamiltonien dans un graphe orienté. J. Combin. Theory Ser. B, 14:137–147, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  64. J.W. Moon. Topics on tournaments. Holt, Rinehart & Winston,, New York, 1968.

    MATH  Google Scholar 

  65. C. Peters and L. Volkmann. Vertex 6-pancyclic in-tournaments. Discrete Math., 285(1-3):227–238, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Tewes. In-tournaments and Semicomplete Multipartite Digraphs. PhD thesis, Lehrstuhl II für Mathematik, RWTH Aachen, 1998.

    Google Scholar 

  67. M. Tewes. Pancyclic in-tournaments. Discrete Math., 233(1-3):193–204, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Tewes. Pancyclic orderings of in-tournaments. Discrete Applied Math., 120(1-3):239–249, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Tewes and L. Volkmann. On the cycle structure of in-tournaments. Australas. J. Combin., 18:293–301, 1998.

    MathSciNet  MATH  Google Scholar 

  70. M. Tewes and L. Volkmann. Vertex pancyclic in-tournaments. J. Graph Theory, 36(2):84–104, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ, 1944.

    MATH  Google Scholar 

  72. R. Wang, A. Yang, and S. Wang. Kings in locally semicomplete digraphs. J. Graph Theory, 63(4):279–287, 2010.

    MathSciNet  MATH  Google Scholar 

  73. D.R. Woodall. Sufficient conditions for cycles in digraphs. Proc. London Math. Soc., 24:739–755, 1972.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Bang-Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bang-Jensen, J. (2018). Locally Semicomplete Digraphs and Generalizations. In: Bang-Jensen, J., Gutin, G. (eds) Classes of Directed Graphs. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-71840-8_6

Download citation

Publish with us

Policies and ethics