Abstract
In this article, a multi-label functional link artificial neural network (MLFLANN) has been developed to efficiently perform multi-label data classification. The input data is functionally expanded to a higher dimension, followed by iterative learning of the multi-label FLANN (MLFLANN) using the training set. The architecture of the network is less complex and the input space dimension is improved in an attempt to overcome the non-linear nature of the multi-label classification problem. The method has been validated on various multi-label datasets and the results are found to be encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)
Cheng, W., Hüllermeier, E., Dembczynski, K.J.: Bayes optimal multilabel classification via probabilistic classifier chains. In: Proceedings of the 27th International Conference on Machine Learning, ICML 2010, pp. 279–286 (2010)
Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3, 326–334 (1965)
De Comité, F., Gilleron, R., Tommasi, M.: Learning multi-label alternating decision trees from texts and data. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 35–49. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45065-3_4
Dehuri, S., Cho, S.B.: Evolutionarily optimized features in functional link neural network for classification. Expert Syst. Appl. 37(6), 4379–4391 (2010)
Dehuri, S., Cho, S.B.: A hybrid genetic based functional link artificial neural network with a statistical comparison of classifiers over multiple datasets. Neural Comput. Appl. 19(2), 317–328 (2010)
Dehuri, S., Roy, R., Cho, S.B., Ghosh, A.: An improved swarm optimized functional link artificial neural network (ISO-FLANN) for classification. J. Syst. Softw. 85(6), 1333–1345 (2012)
Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, pp. 681–687 (2002)
Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice - Hall of India, New Delhi (2008)
Herrera, F., Charte, F., Rivera, A.J., Del Jesus, M.J.: Multilabel Classification: Problem Analysis, Metrics and Techniques. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8
Kongsorot, Y., Horata, P.: Multi-label classification with extreme learning machine. In: 6th International Conference on Knowledge and Smart Technology (KST), pp. 81–86. IEEE (2014)
Misra, B.B., Dehuri, S.: Functional link artificial neural network for classification task in data mining. J. Comput. Sci. 3, 948–955 (2007)
Pao, Y.-H.: Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Boston (1989)
Pao, Y.-H., Phillips, S.M., Sobajic, D.J.: Neural-net computing and the intelligent control of systems. Int. J. Control 56(2), 263–289 (1992)
Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.P.: Multi-label classification of music into emotions. In: Ninth International Conference on Music Information Retrieval (ISMIR), vol. 8, pp. 325–330 (2008)
Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)
Zhang, M.L.: ML-RBF: RBF neural networks for multi-label learning. Neural Process. Lett. 29(2), 61–74 (2009)
Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10), 1338–1351 (2006)
Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Law, A., Chakraborty, K., Ghosh, A. (2017). Functional Link Artificial Neural Network for Multi-label Classification. In: Ghosh, A., Pal, R., Prasath, R. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2017. Lecture Notes in Computer Science(), vol 10682. Springer, Cham. https://doi.org/10.1007/978-3-319-71928-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-71928-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71927-6
Online ISBN: 978-3-319-71928-3
eBook Packages: Computer ScienceComputer Science (R0)