Skip to main content

Assessing Privacy Risk in Retail Data

  • Conference paper
  • First Online:
Personal Analytics and Privacy. An Individual and Collective Perspective (PAP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10708))

Included in the following conference series:

Abstract

Retail data are one of the most requested commodities by commercial companies. Unfortunately, from this data it is possible to retrieve highly sensitive information about individuals. Thus, there exists the need for accurate individual privacy risk evaluation. In this paper, we propose a methodology for assessing privacy risk in retail data. We define the data formats for representing retail data, the privacy framework for calculating privacy risk and some possible privacy attacks for this kind of data. We perform experiments in a real-world retail dataset, and show the distribution of privacy risk for the various attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.unicooptirreno.it/.

References

  1. Alberts, C., Behrens, S., Pethia, R., Wilson, W.: Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE) Framework, Version 1.0. CMU/SEI-99-TR-017. Software Engineering Institute, Carnegie Mellon University (1999)

    Google Scholar 

  2. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements. Requir. Eng. 16, 1 (2011)

    Article  Google Scholar 

  3. Giannotti, F., Lakshmanan, L.V., Monreale, A., Pedreschi, D., Wang, H.: Privacy-preserving mining of association rules from outsourced transaction databases. IEEE Syst. J. 7(3), 385–395 (2013)

    Article  Google Scholar 

  4. Kant, A.K.: Dietary patterns and health outcomes. J. Am. Dietetic Assoc. 104(4), 615–635 (2004)

    Article  Google Scholar 

  5. Le, H.Q., Arch-Int, S., Nguyen, H.X., Arch-Int, N.: Association rule hiding in risk management for retail supply chain collaboration. Comput. Ind. 64(7), 776–784 (2013)

    Article  MATH  Google Scholar 

  6. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. IEEE Security and Privacy (2008)

    Google Scholar 

  7. Pauler, G., Dick, A.: Maximizing profit of a food retailing chain by targeting and promoting valuable customers using Loyalty Card and Scanner Data. Eur. J. Oper. Res. 174(2), 1260–1280 (2006)

    Article  MATH  Google Scholar 

  8. Pellungrini, R., Pappalardo, L., Pratesi, F., Monreale, A.: A data mining approach to assess privacy risk in human mobility data. Accepted for publication in ACM TIST Special Issue on Urban Computing

    Google Scholar 

  9. Pratesi, F., Monreale, A., Trasarti, R., Giannotti, F., Pedreschi, D., Yanagihara, T.: PRISQUIT: a system for assessing privacy risk versus quality in data sharing. Technical report 2016-TR-043. ISTI - CNR, Pisa, Italy (2016)

    Google Scholar 

  10. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining. In: VLDB 2002 (2002)

    Google Scholar 

  11. Rygielski, C., Wang, J.-C., Yen, D.C.: Data mining techniques for customer relationship management. Technol. Soc. 24(4), 483–502 (2002)

    Article  Google Scholar 

  12. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information (Abstract). In: PODS 1998 (1998)

    Google Scholar 

  13. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information technology systems: recommendations of the national institute of standards and technology. NIST special publication, vol. 800 (2002)

    Google Scholar 

  14. Torra, V.: Data Privacy: Foundations, New Developments and the Big Data Challenge. Springer, Heidelberg (2017)

    Book  Google Scholar 

Download references

Acknowledgment

Funded by the European project SoBigData (Grant Agreement 654024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pellungrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pellungrini, R., Pratesi, F., Pappalardo, L. (2017). Assessing Privacy Risk in Retail Data. In: Guidotti, R., Monreale, A., Pedreschi, D., Abiteboul, S. (eds) Personal Analytics and Privacy. An Individual and Collective Perspective. PAP 2017. Lecture Notes in Computer Science(), vol 10708. Springer, Cham. https://doi.org/10.1007/978-3-319-71970-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71970-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71969-6

  • Online ISBN: 978-3-319-71970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics