Skip to main content

Secure Grouping Protocol Using a Deck of Cards

  • Conference paper
  • First Online:
Information Theoretic Security (ICITS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10681))

Included in the following conference series:

  • 493 Accesses

Abstract

We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In some card games, the dealer announces one of the cards (e.g., “”) and then the player having this card becomes the dealer’s partner. However, now the dealer cannot know who is the partner, though the partner him/herself can know that he/she is the dealer’s partner; hence the condition of secure grouping is not achieved.

  2. 2.

    Note that this sequence of number cards is obtained by moving, for each \(k = 1,2,\dots ,7\), the k-th card to the \(\sigma (k)\)-th position. For example, if \(\sigma (k) = k+1\) for \(1 \le k \le 6\) and \(\sigma (7) = 1\), then the resulting card sequence is .

  3. 3.

    Usually, we define coding rules such as and since the card-based protocol normally uses Boolean values. If the usual Boolean encoding rule is used instead of the number cards, the secure grouping protocol can still be executed. In the case the number of cards increases \(2\lceil \log _2{n} \rceil \) times larger.

References

  1. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_27

    Chapter  Google Scholar 

  2. Boer, B.: More efficient match-making and satisfiability The Five Card Trick. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_23

    Chapter  Google Scholar 

  3. Ishikawa, R., Chida, E., Mizuki, T.: Efficient card-based protocols for generating a hidden random permutation without fixed points. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 215–226. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21819-9_16

    Chapter  Google Scholar 

  4. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a minimal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_32

    Chapter  Google Scholar 

  5. Mizuki, T.: Efficient and secure multiparty computations using a standard deck of playing cards. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_29

    Chapter  Google Scholar 

  6. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In: Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS, vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39074-6_16

    Chapter  Google Scholar 

  7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_36

    Chapter  Google Scholar 

  8. Mizuki, T., Shizuya, H.: A formalization of card-based cryptographic protocols via abstract machine. Int. J. Inf. Sec. 13(1), 15–23 (2014)

    Article  Google Scholar 

  9. Mizuki, T., Shizuya, H.: Practical card-based cryptography. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS, vol. 8496, pp. 313–324. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07890-8_27

  10. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_36

    Chapter  Google Scholar 

  11. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Australas. J. Comb. 36, 279–293 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Nakai, T., Tokushige, Y., Misawa, Y., Iwamoto, M., Ohta, K.: Efficient card-based cryptographic protocols for millionaires’ problem utilizing private permutations. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 500–517. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_30

    Chapter  Google Scholar 

  13. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor. Comput. Sci. 191(1–2), 173–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS, vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17142-5_11

    Google Scholar 

  15. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority function with eight cards. In: Dediu, A.-H., Martín-Vide, C., Truthe, B., Vega-Rodríguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45008-2_16

    Chapter  Google Scholar 

  16. Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: An implementation of non-uniform shuffle for secure multi-party computation. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, AsiaPKC@AsiaCCS, Xi’an, China, 30 May–03 June 2016, pp. 49–55 (2016)

    Google Scholar 

  17. Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G., Okamoto, E.: Multi-party computation with small shuffle complexity using regular polygon cards. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 127–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26059-4_7

    Google Scholar 

  18. Shinagawa, K., Mizuki, T., Schuldt, J., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G., Okamoto, E.: Secure multi-party computation using polarizing cards. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241, pp. 281–297. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1_17

    Chapter  Google Scholar 

  19. Shinagawa, K., Mizuki, T., Schuldt, J.C.N., Nuida, K., Kanayama, N., Nishide, T., Hanaoka, G., Okamoto, E.: Secure computation protocols using polarizing cards. IEICE Trans. 99-A(6), 1122–1131 (2016)

    Google Scholar 

  20. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2), 671–678 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement a random bisection cut. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M.A. (eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49001-4_5

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the members of Shin-Akarui-Angou-Benkyou-Kai for their helpful comments. In particular we would like to thank Shuichi Katsumata for his helpful comments. A part of this work is supported by JST CREST grant number JPMJCR1688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hashimoto, Y., Shinagawa, K., Nuida, K., Inamura, M., Hanaoka, G. (2017). Secure Grouping Protocol Using a Deck of Cards. In: Shikata, J. (eds) Information Theoretic Security. ICITS 2017. Lecture Notes in Computer Science(), vol 10681. Springer, Cham. https://doi.org/10.1007/978-3-319-72089-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72089-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72088-3

  • Online ISBN: 978-3-319-72089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics