Skip to main content

\(\delta \)-MAPS: From fMRI Data to Functional Brain Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

  • 4895 Accesses

Abstract

We propose \(\delta \)-MAPS, a spatio-temporal data analysis method that identifies functionally distinct, possibly overlapping, spatially contiguous regions in the brain, referred to as “domains”, and infers the functional (i.e., correlation-based) connections between them. The proposed network inference method examines the statistical significance of each lagged cross-correlation between two domains, infers a range of lag values for each edge, and assigns a weight to each edge based on the covariance of the signal of the two domains. We illustrate the application of \(\delta \)-MAPS on cortical resting-state fMRI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A heuristic to infer \(\delta \) is proposed in [13].

  2. 2.

    The definition of a domain’s signal may vary per application. For example, in climate data it makes sense to define it as the cumulative anomaly, normalized by the size of each grid cell, over the domain’s scope [13].

  3. 3.

    We have experimented with other pruning thresholds between 20%–50% and the results are very similar at the first two hierarchy levels.

  4. 4.

    Grid cells are referred to as voxels in the fMRI literature.

  5. 5.

    MELODIC ICA has an option to automatically estimate the number of ICs to return. Choosing this option yielded approximately 200–250 components in each scan. Activations were much lower than the ones shown in Fig. 3(G,H) both in strength and spatial extent. We could not identify RSNs similar to those shown here.

References

  1. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. Adv. Neural Infor. Process. Syst. 41–50 (2006)

    Google Scholar 

  2. Tirabassi, G., Masoller, C: Unravelling the community structure of the climate system by using lags and symbolic time-series analysis. Sci. Rep. 6 (2016)

    Google Scholar 

  3. Yamasaki, K., Gozolchiani, A., Havlin, S.: Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett. 100(22), 228501 (2008)

    Article  Google Scholar 

  4. Goncalves, B., Perra, N.: Vespignani, A.: Modeling users’ activity on twitter networks: Validation of dunbar’s number. PLoS ONE 6(8), e22656 (2011)

    Google Scholar 

  5. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    Article  Google Scholar 

  6. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  7. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: The backbone of the climate network. EPL 87(4), 48007 (2009)

    Article  Google Scholar 

  8. Palla, G., Dernyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  9. Steinbach, M., Tan, P.N., Kumar, V., Klooster, S., Potter, C: Discovery of climate indices using clustering. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 446-455 (2003)

    Google Scholar 

  10. Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min. ASA Data Sci. J. 4(5), 497–511 (2011)

    Article  MathSciNet  Google Scholar 

  11. Rummel, C., Muller, M., Baier, G., Amor, F., Schindler, K.: Analyzing spatio-temporal patterns of genuine cross-correlations. J. Neurosci. Methods 191(1), 94–100 (2010)

    Article  Google Scholar 

  12. Dommenget, D., Latif, M.: A cautionary note on the interpretation of EOFs. J. Clim. 15(2), 216–225 (2002)

    Article  Google Scholar 

  13. Fountalis, I., Bracco A., Dilkina, B., Dovrolis, C., Keilholz, S.: From spatio-temporal data to a weighted and lagged network between functional domains. arXiv preprint arXiv:1602.07249. (2016)

  14. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23(2), 137–152 (2004)

    Article  Google Scholar 

  15. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  16. Blumensath, T., Behrens, T., Smith, S.M.: Resting-state fMRI single subject cortical parcellation based on region growing. In: Proceeding of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 188-195. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  17. Lu, Y., Jiang, T., Zang, Y.: Region growing method for the analysis of functional MRI data. NeuroImage 20(1), 455–465 (2003)

    Article  Google Scholar 

  18. Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)

    Article  Google Scholar 

  19. Van Den Heuvel, M., Mandl, R., Pol, H.H.: Normalized cut group clustering of resting-state FMRI data. PloS one 3(4) (2008)

    Google Scholar 

  20. Baldassano, C., Beck, D.M., Fei-Fei, L.: Parcellating connectivity in spatial maps. Peer J 3 (2015)

    Google Scholar 

  21. Blumensath, T., Jbabdi, S., Glasser, M.F., Van Essen, D.C., Ugurbil, K., Behrens, T.E., Smith, S.M.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013)

    Article  Google Scholar 

  22. Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B.: Which fMRI clustering gives good brain parcellations?. Frontiers Neurosci 8(2014)

    Google Scholar 

  23. Kramer, M.A., Eden, U.T., Cash, S.S., Kolaczyk, E.D.: Network inference with confidence from multivariate time series. Phys. Rev. E 79(6) (2009)

    Google Scholar 

  24. Van Den Heuvel, M.P., Sporns, O.: Rich-club organization of the human connectome. J. Neurosci. 31(44) (2011)

    Google Scholar 

  25. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  26. Lancichinetti, A., Radicchi, F., Ramasco, J.J., Fortunato, S.: Finding statistically significant communities in networks. PloS one 6(4) (2011)

    Google Scholar 

  27. Palla, G., Dernyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  28. Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  Google Scholar 

  29. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, New York (2015)

    Google Scholar 

  30. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. B (Methodological), 289–300 (1995)

    Google Scholar 

  31. Reiner, A., Yekutieli, D., Benjamini, Y.: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19(3), 368–375 (2003)

    Article  Google Scholar 

  32. Martin, E.A., Davidsen, J.: Estimating time delays for constructing dynamical networks. Nonlinear Process. Geophys. 21(5), 929–937 (2014)

    Google Scholar 

  33. Rummel, C., Muller, M., Baier, G., Amor, F., Schindler, K.: Analyzing spatio-temporal patterns of genuine cross-correlations. J. Neurosci. Methods 191(1), 94–100 (2010)

    Article  Google Scholar 

  34. Sporns, O.: Networks of the Brain. MIT press (2010)

    Google Scholar 

  35. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, E.J., Yacoub, E., Ugurbil, K., WU-Minn HCP Consortium.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Google Scholar 

  36. Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P.: Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013)

    Article  Google Scholar 

  37. Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R.: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  38. Van Essen, D.C., Glasser, M.F., Dierker, D.L., Harwell, J., Coalson, T.: Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22(10), 2241–2262 (2012)

    Article  Google Scholar 

  39. Yeo, B.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zllei, L., Polimeni, J.R., Fischl, B.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)

    Article  Google Scholar 

  40. Ebert-Uphoff, I., Deng, Y.: Causal discovery for climate research using graphical models. J. Clim. 25(17), 5648–5665 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Fountalis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fountalis, I., Dovrolis, C., Dilkina, B., Keilholz, S. (2018). \(\delta \)-MAPS: From fMRI Data to Functional Brain Networks. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_100

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_100

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics