Skip to main content

The Topological Face of Recommendation

  • Conference paper
  • First Online:
Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

  • 4904 Accesses

Abstract

The success of Google’s PageRank algorithm popularized graphs as a tool to model the web’s navigability. At that time, the web topology was resulting from human edition of hyper-links. Nowadays, that topology is mostly resulting from algorithms. In this paper, we propose to study the topology realized by a class of such algorithms: recommenders. By modeling the output of recommenders as graphs, we show that a vast array of topological observations become easily accessible, using a simple web-crawler. We give models and illustrations for those graph representations. We then propose a graph-based methodology for addressing an algorithmic transparency problem: recommendation bias detection. We illustrate this approach on YouTube crawls, targeting the prediction of “Recommended for you” links.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that these graph structures and their dynamics relate them to time-varying networks and time-varying graphs [3].

  2. 2.

    “Lady Gaga’s FULL Pepsi Zero Sugar Super Bowl LI Halftime Show | NFL”, https://www.youtube.com/watch?v=txXwg712zw4.

References

  1. Bashir, M.A., Arshad, S., Wilson, C.: “Recommended for you”: A first look at content recommendation networks. In: IMC (2016)

    Google Scholar 

  2. Blum, A., Chan, T.H.H., Rwebangira, M.R.: A random-surfer web-graph model. In: ANALCO (2006)

    Google Scholar 

  3. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. In: Frey, H., Li, X., Ruehrup, S. (eds.) ADHOC-NOW (2011)

    Google Scholar 

  4. Covington, P., Adams, J., Sargin, E.: Deep neural networks for youtube recommendations. In: RecSys (2016)

    Google Scholar 

  5. Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., Sampath, D.: The youtube video recommendation system. In: RecSys (2010)

    Google Scholar 

  6. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lamprecht, D., Strohmaier, M., Helic, D.: A method for evaluating the navigability of recommendation algorithms. In: International Workshop on Complex Networks and their Applications (2016)

    Google Scholar 

  8. Le Merrer, E., Trédan, G.: Uncovering influence cookbooks : Reverse engineering the topological impact in peer ranking services. In: CSCW (2017)

    Google Scholar 

  9. Lécuyer, M., Ducoffe, G., Lan, F., Papancea, A., Petsios, T., Spahn, R., Chaintreau, A., Geambasu, R.: Xray: Enhancing the web’s transparency with differential correlation. In: USENIX Security Symposium (2014)

    Google Scholar 

  10. Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying recommendation algorithms by graph analysis. J. Intell. Inf. Syst. 20(2), 131–160 (2003)

    Article  Google Scholar 

  11. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. (2010)

    Google Scholar 

  12. Seyerlehner, K., Knees, P., Schnitzer, D., Widmer, G.: Browsing music recommendation networks. In: ISMIR (2009)

    Google Scholar 

  13. Sinha, S., Rashmi, K.S., Sinha, R.: Beyond algorithms: An HCI perspective on recommender systems (2001)

    Google Scholar 

  14. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine learning models via prediction apis. In: USENIX Security Symposium (2016)

    Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature 393(6684), 409–10 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Trédan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Merrer, E., Trédan, G. (2018). The Topological Face of Recommendation. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics