Skip to main content

Certification Using Newton-Invariant Subspaces

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10693))

Abstract

For a square system of analytic equations, a Newton-invariant subspace is a set which contains the resulting point of a Newton iteration applied to each point in the subspace. For example, if the equations have real coefficients, then the set of real points form a Newton-invariant subspace. Starting with any point for which Newton’s method quadratically converges to a solution, this article uses Smale’s \(\alpha \)-theory to certifiably determine if the corresponding solution lies in a given Newton-invariant subspace or its complement. This approach generalizes the method developed in collaboration with F. Sottile for deciding the reality of the solution in the special case that the Newton iteration defines a real map. A description of the implementation in alphaCertified is presented along with examples.

J. D. Hauenstein—Supported in part by NSF ACI-1460032 and Sloan Research Fellowship BR2014-110 TR14.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry. bertini.nd.edu

  2. Björck, G., Fröberg, R.: A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclic \(n\)-roots. J. Symbolic Comput. 12(3), 329–336 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0701-6

    Book  MATH  Google Scholar 

  4. Bozóki, S., Lee, T.-L., Rónyai, L.: Seven mutually touching infinite cylinders. Comput. Geom. 48(2), 87–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dedieu, J.-P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69(231), 1099–1115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Griewank, A., Osborne, M.R.: Analysis of Newton’s method at irregular singularities. SIAM J. Numer. Anal. 20(4), 747–773 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Griffin, Z.A., Hauenstein, J.D.: Real solutions to systems of polynomial equations and parameter continuation. Adv. Geom. 15(2), 173–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hauenstein, J.D., Levandovskyy, V.: Certifying solutions to square systems of polynomial-exponential equations. J. Symbolic Comput. 79(3), 575–593 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hauenstein, J.D., Sottile, F.: Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM TOMS 38(4), 28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hauenstein J.D., Sottile, F.: alphaCertified: software for certifying solutions to polynomial systems. www.math.tamu.edu/~sottile/research/stories/alphaCertified

  11. Lang, S.: Real Analysis, 2nd edn. Addison-Wesley Publishing Company Advanced Book Program, Reading (1983)

    MATH  Google Scholar 

  12. Li, W.V., Wei, A.: On the expected number of zeros of a random harmnoic polynomial. Proc. Am. Math. Soc. 137(1), 195–204 (2009)

    Article  Google Scholar 

  13. Mehta, D., Hauenstein, J.D., Wales, D.J.: Certifying the potential energy landscape. J. Chem. Phys. 138(17), 171101 (2013)

    Article  Google Scholar 

  14. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Roth, B., Freudenstein, F.: Synthesis of path-generating mechanisms by numerical methods. ASME J. Eng. Ind. 85(3), 298–306 (1963)

    Article  Google Scholar 

  16. Shub, M., Smale, S.: Complexity of Bézout’s theorem. I. Geometric aspects. J. Am. Math. Soc. 6(2), 459–501 (1993)

    MATH  Google Scholar 

  17. Smale, S.: Newton’s method estimates from data at one point. In: Ewing, R.E., Gross, K.I., Martin, C.F. (eds.) The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo 1985), pp. 185–196. Springer, New York (1986). https://doi.org/10.1007/978-1-4612-4984-9_13

    Chapter  Google Scholar 

  18. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Complete solution of the nine-point path synthesis problem for four-bar linkages. ASME J. Mech. Des. 114, 153–159 (1992)

    Article  Google Scholar 

  19. Wampler, C.W., Sommese, A.J.: Numerical algebraic geometry and algebraic kinematics. Acta Numer. 20, 469–567 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank Charles Wampler for helpful discussions related to using isotropic coordinates in kinematics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Hauenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hauenstein, J.D. (2017). Certification Using Newton-Invariant Subspaces. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72453-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72452-2

  • Online ISBN: 978-3-319-72453-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics