Skip to main content

Homotopies for Connected Components of Algebraic Sets with Application to Computing Critical Sets

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2017)

Abstract

Given a polynomial system f, this article provides a general construction for homotopies that yield at least one point of each connected component on the set of solutions of \(f = 0\). This algorithmic approach is then used to compute a superset of the isolated points in the image of an algebraic set which arises in many applications, such as computing critical sets used in the decomposition of real algebraic sets. An example is presented which demonstrates the efficiency of this approach.

D. J. Bates—Supported in part by AFOSR grant FA8650-13-1-7317, NSF ACI-1440467, and NSF DMS-1719658.

D. A. Brake and J. D. Hauenstein—Supported in part by AFOSR grant FA8650-13-1-7317 and NSF ACI-1460032.

A. J. Sommese—Supported in part by the Duncan Chair of the University of Notre Dame, AFOSR grant FA8650-13-1-7317, and NSF ACI-1440607.

C. W. Wampler—Supported in part by AFOSR grant FA8650-13-1-7317.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In usual practice, “randomization” means replacing a set of polynomials with some number of random linear combinations of the polynomials. When the appropriate number of combinations is used, then in a Zariski-open subset of the Cartesian space of coefficients of the linear combinations, the solution set of interest is preserved. See, for example, [25, Sect. 13.5]. Here, for simplicity of illustration, we take very simple linear combinations involving small integers. These happen to suffice, but in general one would use a random number generator and possibly hundreds of digits to better approximate the probability-one chance of success that is implied in a continuum model of the coefficient space.

  2. 2.

    As before, we choose simple rational coefficients for simplicity of presentation.

References

  1. Aubry, P., Rouillier, F., Safey El Din, M.: Real solving for positive dimensional systems. J. Symbolic Comput. 34(6), 543–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: Numerical decomposition of the rank-deficiency set of a matrix of multivariate polynomials. In: Robbiano, L., Abbott, J. (eds.) Approximate Commutative Algebra. Texts and Monographs in Symbolic Computation (A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria), pp. 55–77. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-211-99314-9_2

    Chapter  Google Scholar 

  3. Bates, D.J., Hauenstein, J.D., Peterson, C., Sommese, A.J.: A numerical local dimensions test for points on the solution set of a system of polynomial equations. SIAM J. Numer. Anal. 47(5), 3608–3623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for numerical algebraic geometry. bertini.nd.edu

  5. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini. SIAM, Philadelphia (2013)

    Google Scholar 

  6. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Software for one- and two-dimensional real algebraic sets. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 175–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_29

    Google Scholar 

  7. Brake, D.A., Bates, D.J., Hao, W., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini_real: Numerical decomposition of real algebraic curves and surfaces. ACM Trans. Math. Softw. 44(1), 10 (2017)

    Article  Google Scholar 

  8. Chern, S.: Characteristic classes of hermitian manifolds. Annals Math. 47(1), 85–121 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  9. Draisma, J., Horobet, E., Ottaviani, G., Sturmfels, B., Thomas, R.R.: The Euclidean distance degree of an algebraic variety. Found. Comput. Math. 16(1), 99–149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fulton, W.: Intersection Theory. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-1700-8

    Book  MATH  Google Scholar 

  11. Hauenstein, J.D.: Numerically computing real points on algebraic sets. Acta Appl. Math. 125(1), 105–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hauenstein, J.D., Sommese, A.J.: Membership tests for images of algebraic sets by linear projections. Appl. Math. Comput. 219(12), 6809–6818 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Regenerative cascade homotopies for solving polynomial systems. Appl. Math. Comput. 218(4), 1240–1246 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Hauenstein, J.D., Wampler, C.W.: Isosingular sets and deflation. Found. Comp. Math. 13(3), 371–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hauenstein, J.D., Wampler, C.W.: Unification and extension of intersection algorithms in numerical algebraic geometry. Appl. Math. Comput. 293, 226–243 (2017)

    MathSciNet  Google Scholar 

  16. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leykin, A.: Numerical primary decomposition. In: ISSAC 2008, pp. 165–172. ACM, New York (2008)

    Google Scholar 

  18. Lu, Y., Bates, D.J., Sommese, A.J., Wampler, C.W.: Finding all real points of a complex curve. Contemp. Math. 448, 183–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Morgan, A.P., Sommese, A.J.: Coefficient-parameter polynomial continuation. Appl. Math. Comput. 29(2), 123–160 (1989). Errata: Appl. Math. Comput. 51(207) (1992)

    Google Scholar 

  20. Morgan, A.P., Sommese, A.J.: A homotopy for solving general polynomial systems that respects \(m\)-homogeneous structures. Appl. Math. Comput. 24, 101–113 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Rouillier, F., Roy, M.-F., Safey El Din, M.: Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complex. 16(4), 716–750 (2000)

    Article  MATH  Google Scholar 

  22. Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complex. 16(3), 572–602 (2000)

    Article  MATH  Google Scholar 

  23. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical irreducible decomposition using projections from points on the components. Contemp. Math. 286, 37–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sommese, A.J., Wampler, C.W.: Numerical algebraic geometry. In: The Mathematics of Numerical Analysis (Park City, UT, 1995). Lectures in Applied Mathematics, vol. 32, pp. 749–763. AMS, Providence, RI (1996)

    Google Scholar 

  25. Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  26. Verschelde, J., Cools, R.: Symbolic homotopy construction. Appl. Algebra Eng. Commun. Comput. 4(3), 169–183 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wampler, C.W., Larson, B., Erdman, A.: A new mobility formula for spatial mechanisms. In: Proceedings of the DETC/Mechanisms and Robotics Conference. ASME (2007). paper DETC2007-35574

    Google Scholar 

  28. Wampler, C.W., Hauenstein, J.D., Sommese, A.J.: Mechanism mobility and a local dimension test. Mech. Mach. Theory 46(9), 1193–1206 (2011)

    Article  MATH  Google Scholar 

  29. Wang, D.: Elimination Methods. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-7091-6202-6

    Book  MATH  Google Scholar 

  30. Wu, W., Reid, G.: Finding points on real solution components and applications to differential polynomial systems. In: ISSAC 2013, pp. 339–346. ACM, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani A. Brake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bates, D.J., Brake, D.A., Hauenstein, J.D., Sommese, A.J., Wampler, C.W. (2017). Homotopies for Connected Components of Algebraic Sets with Application to Computing Critical Sets. In: Blömer, J., Kotsireas, I., Kutsia, T., Simos, D. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2017. Lecture Notes in Computer Science(), vol 10693. Springer, Cham. https://doi.org/10.1007/978-3-319-72453-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72453-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72452-2

  • Online ISBN: 978-3-319-72453-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics