Skip to main content

Coverage Performance in Cognitive Radio Networks with Self-sustained Secondary Transmitters

  • Conference paper
  • First Online:
5G for Future Wireless Networks (5GWN 2017)

Abstract

In this paper, we investigate the opportunistic spectrum access (OSA) of self-sustained secondary transmitters (STs) in cognitive radio (CR) network to improve both the spectral efficiency and energy efficiency. Particularly, by utilizing energy harvesting, the STs are assumed to be able to collect and store ambient powers for data transmission. An energy harvesting based OSA protocol, namely the EH-PRA protocol, is considered, under which a ST is eventually allowed to launch the transmission only if its battery level is larger than the transmit power and the estimated interference perceived at the active primary receivers (PRs) is lower than a threshold \(N_{ra}\). Given that the battery capacity of STs is infinite, we derive the transmission probability of STs. We then characterize the coverage performance of the CR network. Finally, simulation results are provided for the validation of our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: Renewable energy resources: current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 39, 748–764 (2014)

    Article  Google Scholar 

  2. Hasan, Z., Boostanimehr, H., Bhargava, V.K.: Green cellular networks: a survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 13(4), 524–540 (2011)

    Article  Google Scholar 

  3. Kwasinski, A., Kwasinski, A.: Increasing sustainability and resiliency of cellular network infrastructure by harvesting renewable energy. IEEE Commun. Mag. 53(4), 110–116 (2015)

    Article  Google Scholar 

  4. Gunduz, D., Stamatiou, K., Michelusi, N., Zorzi, M.: Designing intelligent energy harvesting communication systems. IEEE Commun. Mag. 52(1), 210–216 (2014)

    Article  Google Scholar 

  5. Han, T., Ansari, N.: Powering mobile networks with green energy. IEEE Wirel. Commun. 21(1), 90–96 (2014)

    Article  Google Scholar 

  6. Zhao, N., Yu, F.R., Leung, V.C.M.: Wireless energy harvesting in interference alignment networks. IEEE Commun. Mag. 53(6), 72–78 (2015)

    Article  Google Scholar 

  7. Zhang, H., Jiang, C., Beaulieu, N.C., Chu, X., Wen, X., Tao, M.: Resource allocation in spectrum-sharing OFDMA femtocells with heterogeneous services. IEEE Trans. Commun. 62(7), 2366–2377 (2014)

    Article  Google Scholar 

  8. Zhang, H., Chu, X., Guo, W., Wang, S.: Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Commun. Mag. 53(3), 158–164 (2015)

    Article  Google Scholar 

  9. Wang, B., Liu, K.J.R.: Advances in cognitive radio networks: a survey. IEEE J. Sel. Top. Sig. Process. 5(1), 5–23 (2011)

    Article  Google Scholar 

  10. Zeng, Y.H., Liang, Y.-C., Hoang, A.T., Zhang, R.: A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Sig. Process. (2010). Article ID 381465

    Google Scholar 

  11. Zhao, Q., Sadler, B.: A survey of dynamic spectrum access. IEEE Sig. Process. Mag. 24(3), 79–89 (2007)

    Article  Google Scholar 

  12. Zhang, R., Liang, Y.C., Cui, S.: Dynamic resource allocation in cognitive radio networks. IEEE Sig. Process. Mag. 27(3), 102–114 (2010)

    Article  Google Scholar 

  13. Song, X., Yin, C., Liu, D., Zhang, R.: Spatial throughput characterization in cognitive radio networks with threshold-based opportunistic spectrum access. IEEE J. Sel. Areas Commun. 32(11), 2190–2204 (2014)

    Article  Google Scholar 

  14. Tandra, R., Mishra, S., Sahai, A.: What is a spectrum hole and what does it take to recognize one. Proc. IEEE 97(5), 824–848 (2009)

    Article  Google Scholar 

  15. Zhang, H., Jiang, C., Beaulieu, N., Chu, X., Wang, X., Quek, T.: Resource allocation for cognitive small cell networks: a cooperative bargaining game theoretic approach. IEEE Trans. Wirel. Wirel. Commun. 14(6), 3481–3493 (2015)

    Article  Google Scholar 

  16. Zhao, X., Yang, C., Yao, Y., Chen, Z., Xia, B.: Cognitive and cache-enabled D2D communications in cellular networks, November 2015. http://arxiv.org/abs/1509.04747

  17. Wang, X., Chen, M., Taleb, T., Ksentini, A., Leung, V.C.M.: Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 52(2), 131–39 (2014)

    Article  Google Scholar 

  18. Park, S., Lee, S., Kim, B., Hong, D., Lee, J.: Energy-efficient opportunistic spectrum access in cognitive radio networks with energy harvesting. In: Proceedings of ACM International Conference on Cognitive Radio and Advanced Spectrum Management, Barcelona, Spain (2011)

    Google Scholar 

  19. Park, S., Kim, H., Hong, D.: Cognitive radio networks with energy harvesting. IEEE Trans. Wirel. Commun. 12(3), 1386–1397 (2013)

    Article  Google Scholar 

  20. Park, S., Hong, D.: Achievable throughput of energy harvesting cognitive radio networks. IEEE Trans. Wirel. Commun. 13(2), 1010–1022 (2014)

    Article  Google Scholar 

  21. Pappas, N., Jeon, J., Ephremides, A., Traganitis, A.: Optimal utilization of a cognitive shared channel with a rechargeable primary source node. In: Proceedings of IEEE Information Theory Workshop, Paraty, Brazil (2011)

    Google Scholar 

  22. Yin, S., Zhang, E., Qu, Z., Yin, L., Li, S.: Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Trans. Wirel. Commun. 13(9), 4693–4707 (2014)

    Article  Google Scholar 

  23. Yin, S., Qu, Z., Li, S.: Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE J. Sel. Areas Commun. 33(3), 407–422 (2015)

    Article  Google Scholar 

  24. Chung, W., Park, S., Lim, S., Hong, D.: Spectrum sensing optimization for energy-harvesting cognitive radio systems. IEEE Trans. Wirel. Commun. 13(5), 2601–2613 (2014)

    Article  Google Scholar 

  25. Gallager, R.G.: Stochastic Processes Theory for Applications. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  26. Baccelli, F., BÅ‚aszczyszyn, B.: Stochastic geometry and wireless networks. NOW Found. Trends Netw. (2010)

    Google Scholar 

  27. Baccelli, F., Błaszczyszyn, B., Mühlethaler, P.: Stochastic analysis of spatial and opportunistic aloha. IEEE J. Sel. Areas Commun. 27(7), 1029–1046 (2009)

    Article  Google Scholar 

  28. Kingman, J.F.C.: Poisson Processes. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  29. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, Chichester (1996)

    MATH  Google Scholar 

  30. Weber, S., Andrews, J., Jindal, N.: The effect of fading, channel inversion, and threshold scheduling on ad hoc networks. IEEE Trans. Inf. Theor. 53(11), 4127–4149 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vaze, R.: Transmission capacity of spectrum sharing ad hoc networks with multiple antennas. IEEE Trans. Wirel. Commun. 10(7), 2334–2340 (2011)

    Article  MathSciNet  Google Scholar 

  32. Huang, K., Lau, V.K.N., Chen, Y.: Spectrum sharing between cellular and mobile ad hoc networks: transmission-capacity trade-off. IEEE J. Sel. Areas Commun. 27(7), 1029–1046 (2009)

    Article  Google Scholar 

  33. Lee, J., Andrews, J.G., Hong, D.: Spectrum-sharing transmission capacity. IEEE Trans. Wirel. Commun. 10(9), 3053–3063 (2011)

    Article  Google Scholar 

  34. Lee, J., Andrews, J.G., Hong, D.: The effect of interference cancellation on spectrum-sharing transmission capacity. In: Proceedings of IEEE Conference on Communications, Kyoto, Japan (2011)

    Google Scholar 

  35. Haenggi, M., Andrews, J., Baccelli, F., Dousse, O., Franceschetti, M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27(7), 1029–1046 (2009)

    Article  Google Scholar 

  36. Lee, C., Haenggi, M.: Interference and outage in Poisson cognitive networks. IEEE Trans. Wireless Commun. 11(4), 1392–1401 (2012)

    Article  Google Scholar 

  37. Nguyen, T., Baccelli, F.: A probabilistic model of carrier sensing based cognitive radio. In: Proceedings of IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Singapore, April 2010

    Google Scholar 

  38. Hasan, A., Andrews, J.: The guard zone in wireless ad hoc networks. IEEE Trans. Wirel. Commun. 6(3), 897–906 (2007)

    Article  Google Scholar 

  39. Lee, S.H., Huang, K.B., Zhang, R.: Opportunistic wireless energy harvesting in cognitive radio networks. IEEE Trans. Wirel. Commun. 12(9), 4788–4799 (2013)

    Article  Google Scholar 

  40. Huang, K.: Spatial throughput of mobile ad hoc networks with energy harvesting. IEEE Trans. Inf. Theor. 59(11), 7597–7612 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by Fundamental Research Funds for the Central Universities under Grant No. N150403001, the National Natural Science Foundation of China under Grant 61671141, U14331156, 1151002, 61401079, 61501038, and the Major Research Plan of the National Natural Science Foundation of China under Grant 91438117, 91538202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshi Song .

Editor information

Editors and Affiliations

A Proof of Theorem 2

A Proof of Theorem 2

Proof

With the energy harvesting based PRA protocol, given a typical PR located at the origin, the received SIR is given by

$$\begin{aligned} \mathrm {SIR}_p = \frac{P_p h_0 d_p^{- \alpha }}{\sum \limits _{i \in \Pi _p^t}P_p h_i |\mathbf{{X}}_i|^{-\alpha } + \sum \limits _{j \in \Pi _{s}^{ra}}P_s g_j|\mathbf{{Y}}_j|^{-\alpha }}. \end{aligned}$$
(21)

It is worth noting that under the EH-PRA protocol, at the typical PR, the received interference from the j-th active ST is constrained as \(P_s g_j |\mathbf{{Y}}_j|^{- \alpha }\le \frac{P_s{N_{ra}}}{P_p}\). Therefore, under Assumption 1, the coverage probability of the primary network with the EH-PRA protocol is given by

$$\begin{aligned} \begin{aligned} \tau _p^{ra} =&\Pr \left\{ {\mathrm {SIR}}_p \ge \theta _p \Bigg | g_j |\mathbf{{Y}}_j|^{-\alpha } \le \frac{N_{ra} }{P_p}\right\} \\ =&\Pr \left\{ \frac{P_p h_0 d_p^{- \alpha }}{\sum \limits _{i \in \Pi _p^t}P_p h_i |\mathbf{{X}}_i|^{-\alpha } + \sum \limits _{j \in \Pi _{s}^{ra}}P_s g_j|\mathbf{{Y}}_j|^{-\alpha }} \ge \theta _p \Bigg | g_j |\mathbf{{Y}}_j|^{-\alpha } \le \frac{N_{ra} }{P_p}\right\} \\ =&{\mathbb {E}}_\mathbf{{X}}\left[ \prod \limits _{i \in \Pi _p^t} {\mathbb {E}}_h\left[ e^{-\frac{\theta _p h_i |\mathbf{{X}}_i|^{-\alpha }}{d_p^{- \alpha }}}\right] \right] \\&\times \, {\mathbb {E}}_\mathbf{{Y}} \left[ \prod \limits _{j \in \Pi _{s}^{ra}} {\mathbb {E}}_g \left[ e^{-\frac{\theta _p P_s g_j |\mathbf{{Y}}_j|^{-\alpha }}{P_p d_p^{- \alpha }}}\Bigg | g_j \le \frac{N_{ra} |\mathbf{{Y}}_j|^{\alpha }}{P_p}\right] \right] \\ \buildrel {(a)}\over =&\exp \left\{ - \frac{2 \pi ^2}{\alpha \sin \left( \frac{2 \pi }{\alpha }\right) } \mu _p\theta _p^{\frac{2}{\alpha }} d_p^2 \right\} \times \exp \left\{ - 2 \pi \int _0^{\infty } \mathcal {G} \cdot \lambda _{ra}^{\mathbf {R}}(u) u \text {d}u\right\} \\ \buildrel {(b)}\over =&\exp \left\{ - \frac{2 \pi ^2}{\alpha \sin \left( \frac{2 \pi }{\alpha }\right) } \theta _p^{\frac{2}{\alpha }} d_p^2 \mu _p\right\} \times \exp \left\{ - 2 \pi \lambda _0 \frac{\nu _e^s}{P} \int _\zeta ^{\infty }\left( 1 - \varrho (u)\right) u d u\right\} \\&\times \, \exp \left\{ - 2 \pi \lambda _0 Q_{ra}\int _0^\zeta \left( 1 - \varrho (u)\right) \mathcal {P}(u) u d u\right\} . \end{aligned} \end{aligned}$$
(22)

where (a) follows from the fact that the probability density function of g conditioned on \(g \le t\) is given by

$$\begin{aligned} f(g|g \le t) = \frac{e^{-g}}{1 - e^{-t}}, \end{aligned}$$
$$ \mathcal {G} = 1 - \int _0^{\frac{N_{ra} u^{\alpha }}{P_p}} e^{- \frac{\theta _p P_s g u^{- \alpha }}{P_p d_p^{- \alpha }}} \times \frac{e^{-g}}{1 - e^{- {\frac{N_{ra} u^{\alpha }}{P_p}}}}dg, $$

and (b) follows from (8). This thus completes the proof of Theorem 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Meng, X., Geng, Y., Ye, N., Liu, J. (2018). Coverage Performance in Cognitive Radio Networks with Self-sustained Secondary Transmitters. In: Long, K., Leung, V., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds) 5G for Future Wireless Networks. 5GWN 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-72823-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72823-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72822-3

  • Online ISBN: 978-3-319-72823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics