Skip to main content

Multi-fidelity Surrogate Modeling for Application/Architecture Co-design

  • Conference paper
  • First Online:
High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation (PMBS 2017)

Abstract

The HPC community has been using abstract, representative applications and architecture models to enable faster co-design cycles. While developers often qualitatively verify the correlation of the application abstractions to the parent application, it is equally important to quantify this correlation to understand how the co-design results translate to the parent application. In this paper, we propose a multi-fidelity surrogate (MFS) approach which combines data samples of low-fidelity (LF) models (representative apps and architecture simulation) with a few samples of a high-fidelity (HF) model (parent app). The application of MFS is demonstrated using a multi-physics simulation application and its proxy-app, skeleton-app, and simulation models. Our results show that RMSE between predictions of MFS and the baseline HF models was 4%, which is significantly better than using either LF or HF data alone, demonstrating that MFS is a promising approach for predicting the parent application performance while staying within a computational budget.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Center for Compressible Multiphase Turbulence webpage, 15 February 2015. https://www.eng.ufl.edu/ccmt/

  2. NEK5000 webpage. https://nek5000.mcs.anl.gov/

  3. Vulcan Supercomputer, LLNL webpage. https://computation.llnl.gov/computers/vulcan

  4. Balabanov, V., Grossman, B., Watson, L., Mason, W., Haftka, R.: Multifidelity response surface model for HSCT wing bending material weight. In: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, p. 4804 (1998)

    Google Scholar 

  5. Banerjee, T., Hackl, J., Shringarpure, M., Islam, T., Balachandar, S., Jackson, T., Ranka, S.: CMT-bone: a proxy application for compressible multiphase turbulent flows. In: 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), pp. 173–182, December 2016

    Google Scholar 

  6. Barrett, R.F., Borkar, S., Dosanjh, S.S., Hammond, S.D., Heroux, M.A., Hu, X.S., Luitjens, J., Parker, S.G., Shalf, J., Tang, L.: On the role of co-design in high performance computing (2013)

    Google Scholar 

  7. Barrett, R.F., Vaughan, C.T., Heroux, M.A.: Minighost: a miniapp for exploring boundary exchange strategies using stencil computations in scientific parallel computing. Sandia National Laboratories, Technical report SAND 5294832 (2011)

    Google Scholar 

  8. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, vol. 2. Wiley-Interscience, New York (2005)

    MATH  Google Scholar 

  9. Dosanjh, S.S., Barrett, R.F., Doerfler, D., Hammond, S.D., Hemmert, K.S., Heroux, M.A., Lin, P.T., Pedretti, K.T., Rodrigues, A.F., Trucano, T.: Exascale design space exploration and co-design. Future Gener. Comput. Syst. 30, 46–58 (2014)

    Article  Google Scholar 

  10. Dosanjh, S.S., Barrett, R.F., Doerfler, D., Hammond, S.D., Hemmert, K.S., Heroux, M.A., Lin, P.T., Pedretti, K.T., Rodrigues, A.F., Trucano, T., et al.: Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications. J. Parallel Distrib. Comput. 30, 107–122 (2014)

    Google Scholar 

  11. Ellis, M., Mathews, E.: A new simplified thermal design tool for architects. Build. Environ. 36, 1009–1021 (2011)

    Article  Google Scholar 

  12. FernƔndez-Godino, M.G., Park, C., Kim, N.H., Haftka, R.T.: Review of multi-fidelity models. arXiv preprint arXiv:1609.07196 (2016)

  13. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C., Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improving performance via mini-applications. Sandia National Laboratories, Technical report SAND2009-5574 3 (2009)

    Google Scholar 

  14. Huang, D., Allen, T., Notz, W., Miller, R.: Sequential kriging optimization using multiple-fidelity evaluations. Struct. Multi. Optim. 32, 369–382 (2006)

    Article  Google Scholar 

  15. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. J. Stat. Plan. Infer. 134, 268–287 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical report LLNL-TR-641973 (2013)

    Google Scholar 

  17. Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 63(3), 425–464 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, N., Sringarpure, M., Banerjee, T., Hackl, J., Balachandar, S., Lam, H., George, A., Ranka, S.: CMT-bone: a mini-app for compressible multiphase turbulence simulation software. In: 2015 IEEE International Conference on Cluster Computing, pp. 785–792, September 2015

    Google Scholar 

  19. Kumar, N., Pascoe, C., Hajas, C., Lam, H., Stitt, G., George, A.: Behavioral emulation for scalable design-space exploration of algorithms and architectures. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 5–17. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46079-6_1

    Chapter  Google Scholar 

  20. Le Gratiet, L.: Multi-fidelity Gaussian process regression for computer experiments. Universit Paris-Diderot-Paris VII (2013)

    Google Scholar 

  21. Peherstorfer, B., Willcox, K., Gunzburger, M.: Survey of multifidelity methods in uncertainty propagation, inference, and optimization (2016)

    Google Scholar 

  22. Qian, P.Z., Wu, C.J.: Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments. Technometrics 50, 192–204 (2008)

    Article  MathSciNet  Google Scholar 

  23. Xiong, Y., Chen, W., Tsui, K.L.: A new variable-fidelity optimization framework based on model fusion and objective-oriented sequential sampling. J. Mech. Des. 130(11), 111401 (2008)

    Article  Google Scholar 

  24. Zhang, Y., Kim, N.H., Park, C., Haftka, R.T.: Multi-fidelity surrogate based on single linear regression. ArXiv e-prints arXiv:1705.02956 (2017)

  25. Zhang, Y., Meeker, J., Schutte, J., Kim, N., Haftka, R.: On approaches to combine experimental strength and simulation with application to open-hole-tension configuration. In: Proceedings of the American Society for Composites: Thirty-First Technical Conference (2016)

    Google Scholar 

  26. Zheng, L., Hendrick, T.L., Mittal, R.: A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118–154 (2013)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Neelakantan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y. et al. (2018). Multi-fidelity Surrogate Modeling for Application/Architecture Co-design. In: Jarvis, S., Wright, S., Hammond, S. (eds) High Performance Computing Systems. Performance Modeling, Benchmarking, and Simulation. PMBS 2017. Lecture Notes in Computer Science(), vol 10724. Springer, Cham. https://doi.org/10.1007/978-3-319-72971-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72971-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72970-1

  • Online ISBN: 978-3-319-72971-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics