Skip to main content

Decision-Making Accuracy for Sensor Networks with Inhomogeneous Poisson Observations

  • Chapter
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 6))

  • 2343 Accesses

Abstract

The paper considers a network of sensors which observes a time-inhomogeneous Poisson signal and has to decide, within a fixed time interval, between two hypotheses concerning the intensity of the observed signal. The focus is on the impact of information sharing among individual sensors on the accuracy of a decision. Each sensor computes locally a likelihood ratio based on its own observations, and, at the end of the decision interval, shares this information with its neighbors according to a communication graph, transforming each sensor to a decision-making unit. Using analytically derived upper bounds on the decision error probabilities, the capacity of each sensor as a decision maker is evaluated, and consequences of ranking are explored. Example communication topologies are studied to highlight the interplay between a sensor’s location in the underlying communication graph (quantity of information) and the strength of the signal it observes (quality of information). The results are illustrated through application to the problem of deciding whether or not a moving target carries a radioactive source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This entails no loss of generality; indeed, if information is to be sent from sensor i to sensor \(\ell \), this can be accommodated at the expense of introducing the additional directed edge \((i,\ell )\).

References

  1. Bhambhani, V., Valbuena, L., Tanner, H.G.: Spatially distributed cellular neural networks. Int. J. Intell. Comput. Cybern. 4(4), 465–486 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bogacz, R., Brown, E., Moehlis, J., Holmes, P., Cohen, J.D.: The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol. Rev. 113(4), 700–765 (2006)

    Article  Google Scholar 

  3. Brémaud, P.: Point Processes and Queues. Martingale Dynamics. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  4. Byrd, R., Moss, J., Priedhorsky, W., Pura, C., Richter, G.W., Saeger, K., Scarlett, W., Scott Jr., S., Wagner, R.: Nuclear detection to prevent or defeat clandestine nuclear attack. IEEE Sens. J. 5(4), 593–609 (2005)

    Article  Google Scholar 

  5. Fitch, K., Leonard, N.E.: Information centrality and optimal leader selection in noisy networks. In: IEEE Intenrational Conference on Decision and Control, pp. 7510–7515 (2013)

    Google Scholar 

  6. González, F.I., Bernard, E.N., Meinig, C., Eble, M.C., Mofjeld, H.O., Stalin, S.: The NTHMP tsunameter network. Nat. Hazards 35, 25–39 (2005)

    Article  Google Scholar 

  7. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous Poisson processes by thinning. Nav. Res. Logist. Q. 26(3), 403–413 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Morreale, P., Qi, F., Croft, P.: A green wireless sensor network for environmental monitoring and risk identification. Int. J. Sens. Netw. 10(1–2), 73–82 (2011)

    Article  Google Scholar 

  9. Nemzek, R.J., Dreicer, J.S., Torney, D.C., Warnock, T.T.: Distributed sensor networks for detection of mobile radioactive sources. IEEE Trans. Nucl. Sci. 51(4), 1693–1700 (2004)

    Article  Google Scholar 

  10. Ogata, Y.: Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys. 155, 471–507 (1999)

    Article  Google Scholar 

  11. Pahlajani, C.D., Poulakakis, I., Tanner, H.G.: Networked decision making for Poisson processes with applications to nuclear detection. IEEE Trans. Autom. Control 59(1), 193–198 (2014)

    Article  Google Scholar 

  12. Pahlajani, C.D., Sun, J., Poulakakis, I., Tanner, H.G.: Error probability bounds for nuclear detection: improving accuracy through controlled mobility. Automatica 50(10), 2470–2481 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pasupathy, R.: Generating nonhomogeneous Poisson processes. Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2009)

    Google Scholar 

  14. Poulakakis, I., Scardovi, L., Leonard, N.E.: Node classification in collective evidence accumulation toward a decision. In: Proceedings of the IEEE International Conference on Decision and Control (2012)

    Google Scholar 

  15. Poulakakis, I., Young, G.F., Scardovi, L., Leonard, N.E.: Information centrality and ordering of nodes for accuracy in noisy decision-making networks. IEEE Trans. Autom. Control 61(4), 1040–1046 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Srikrishna, D., Chari, A.N., Tisch, T.: Deterance of nuclear terrorism with mobile radiation detectors. Nonproliferation Rev. 12(3), 573–614 (2005)

    Article  Google Scholar 

  17. Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11(1), 1–37 (1989)

    Article  MathSciNet  Google Scholar 

  18. Sundaresan, A., Varshney, P.K., Rao, N.S.V.: Distributed detection of a nuclear radioactive source using fusion of correlated decisions. In: Proceedings of the International Conference on Information Fusion, pp. 1–7. IEEE (2007)

    Google Scholar 

  19. Tenney, R.R., Sandell Jr., N.R.: Detection with distributed sensors. IEEE Trans. Aerosp. Electron. Syst. 17(4), 501–510 (1981)

    Article  MathSciNet  Google Scholar 

  20. Tsitsiklis, J., Athans, M.: On the complexity of distributed decision problems. IEEE Trans. Autom. Control AC-30, 440–446 (1985)

    Google Scholar 

  21. Tsitsiklis, J.N.: Decentralized detection. Adv. Stat. Signal Process. 2, 297–344 (1993)

    Google Scholar 

  22. Varshney, P.K.: Distributed Detections and Data Fusion. Springer, New York (1997)

    Book  Google Scholar 

  23. Viswanathan, R., Varshney, P.K.: Distributed detection with multiple sensors: part I - fundamentals. Proc. IEEE 85(1), 54–63 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by DTRA under award #HDTRA1-16-1-0039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Poulakakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pahlajani, C.D., Yadav, I., Tanner, H.G., Poulakakis, I. (2018). Decision-Making Accuracy for Sensor Networks with Inhomogeneous Poisson Observations. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73008-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73006-6

  • Online ISBN: 978-3-319-73008-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics