Skip to main content

Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning

  • Chapter
  • First Online:
Distributed Autonomous Robotic Systems

Abstract

Generating verifiably correct execution strategies from Linear Temporal Logic (LTL) mission specifications avoids the need for manually designed robot behaviors. However, when incorporating a team of robot agents, the additional model complexity becomes a critical issue. Given a single finite LTL mission and a team of robots, we propose an automata-based approach to automatically identify possible decompositions of the LTL specification into sets of independently executable task specifications. Our approach leads directly to the construction of a team model with significantly lower complexity than other representations constructed with conventional methods. Thus, it enables efficient search for an optimal decomposition and allocation of tasks to the robot agents.

Dimos V. Dimarogonas was supported by the H2020 ERC Starting Grant BUCOPHSYS and the Swedish Research Council (VR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, M., Kumar, N., Vig, L.: Non-additive multi-objective robot coalition formation. Expert Syst. Appl. 41(8), 3736–3747 (2014)

    Article  Google Scholar 

  2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    Google Scholar 

  3. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of distributed robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)

    Article  Google Scholar 

  4. De Giacomo, G., Vardi, M.: Linear temporal logic and linear dynamic logic on finite traces. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 854–860. Association for Computing Machinery (2013)

    Google Scholar 

  5. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces: insensitivity to infiniteness. In: AAAI, pp. 1027–1033. Citeseer (2014)

    Google Scholar 

  6. Fu, J., Tanner, H., Heinz, J.: Concurrent multi-agent systems with temporal logic objectives: game theoretic analysis and planning through negotiation. IET Control Theory Appl. 9(3), 465–474 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: International Symposium on Protocol Specification, Testing and Verification. IFIP (1995)

    Google Scholar 

  8. Guo, M., Dimarogonas, D.V.: Bottom-up motion and task coordination for loosely-coupled multi-agent systems with dependent local tasks. In: CASE, pp. 348–355. IEEE (2015)

    Google Scholar 

  9. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications. In: Conference on Decision and Control (CDC), pp. 3953–3958. IEEE (2008)

    Google Scholar 

  10. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

    Article  Google Scholar 

  11. Kloetzer, M., Mahulea, C.: Accomplish multi-robot tasks via Petri net models. In: International Conference on Automation Science and Engineering (CASE), pp. 304–309. IEEE (2015)

    Google Scholar 

  12. Kupferman, O., Vardi, M.: Model checking of safety properties. Form. Methods Syst. Des. 19(3), 291–314 (2001)

    Article  MATH  Google Scholar 

  13. Lacerda, B., Lima, P.: LTL-based decentralized supervisory control of multi-robot tasks modelled as Petri nets. In: International Conference on Intelligent Robots and Systems (IROS), pp. 3081–3086. IEEE (2011)

    Google Scholar 

  14. Luna, R., Lahijanian, M., Moll, M., Kavraki, L.: Asymptotically optimal stochastic motion planning with temporal goals. In: Algorithmic Foundations of Robotics XI, pp. 335–352. Springer, Berlin (2015)

    Google Scholar 

  15. Raman, V., Kress-Gazit, H.: Synthesis for multi-robot controllers with interleaved motion. In: International Conference on Robotics and Automation (ICRA), pp. 4316–4321. IEEE (2014)

    Google Scholar 

  16. Raman, V., Finucane, C., Kress-Gazit, H.: Temporal logic robot mission planning for slow and fast actions. In: International Robots and Systems (IROS), pp. 251–256. IEEE (2012)

    Google Scholar 

  17. Smith, S., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with temporal logic constraints. Int. J. Robot. Res. 30, 1695–1708 (2011)

    Article  Google Scholar 

  18. Stefanescu, A.: Automatic synthesis of distributed transition systems. Ph.D. thesis, University of Stuttgart (2006)

    Google Scholar 

  19. Tumova, J., Dimarogonas, D.V.: Decomposition of multi-agent planning under distributed motion and task LTL specifications. In: CDC, pp. 1775–1780. IEEE (2015)

    Google Scholar 

  20. Ulusoy, A., Smith, S., Ding, X.C., Belta, C.: Robust multi-robot optimal path planning with temporal logic constraints. In: International Conference on Robotics and Automation (ICRA), pp. 4693–4698. IEEE (2012)

    Google Scholar 

  21. Wolff, E., Topcu, U., Murray, R.: Optimization-based trajectory generation with linear temporal logic specifications. In: International Conference on Robotics and Automation (ICRA), pp. 5319–5325. IEEE (2014)

    Google Scholar 

  22. Wolper, P.: Constructing automata from temporal logic formulas: a tutorial. In: Lectures on Formal Methods and Performance Analysis, pp. 261–277. Springer, Berlin (2001)

    Google Scholar 

  23. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: International Conference on Robotics and Automation (ICRA), pp. 1515–1522. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Schillinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schillinger, P., Bürger, M., Dimarogonas, D.V. (2018). Decomposition of Finite LTL Specifications for Efficient Multi-agent Planning. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73008-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73006-6

  • Online ISBN: 978-3-319-73008-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics