Skip to main content

Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation

  • Chapter
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 6))

Abstract

This paper builds on previous Naval Postgraduate School success with large, autonomous swarms of fixed-wing unmanned aerial vehicles (UAV) to provide infrastructure for the simultaneous operation of multiple swarms. Developed in support of an event fostering swarm capability development through competition, the online referee, or Arbiter, monitors and evaluates multiple independent but interacting swarms. This Arbiter provides sensor modeling for both swarms, evaluation of inter-swarm interaction, scoring and enforcement of competition rules, and graphical display of game status. Arbiter capability is demonstrated through live-fly experiments and software-in-the-loop simulation. The Arbiter is also used to evaluate swarm behaviors that are developed for air-to-air pursuit of an opposing swarm with results provided in this paper.

T. H. Chung, M. R. Clement and M. A. Day are Contributor to this work were performed while affiliated with the Naval Postgraduate School.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Arbiter does not provide safety-of-flight services. Collision and terrain avoidance, maneuvering limits, and other hazards must be implemented on the individual UAVs.

References

  1. Asada, M., Veloso, M., Kraetzschmar, G.K., Kitano, H.: Robocup: today and tomorrow. Exp. Robot. VI 250, 369 (1999)

    Article  MATH  Google Scholar 

  2. Association for Unmanned Vehicle Systems International: 2016 Rules for AUVSI Seafarer Chapter’s 14th Annual Student UAS Competition (2016)

    Google Scholar 

  3. Bayraktar, S., Fainekos, G.E., Pappas, G.J.: Experimental cooperative control of fixed-wing unmanned aerial vehicles. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 4, pp. 4292–4298. IEEE (2004)

    Google Scholar 

  4. Bekmezci, I., Sahingoz, O.K., Temel, Ş.: Flying ad-hoc networks (fanets): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  5. Buehler, M., Iagnemma, K., Singh, S.: The 2005 DARPA Grand Challenge: The Great Robot Race, vol. 36. Springer Science & Business Media (2007)

    Google Scholar 

  6. Buehler, M., Iagnemma, K., Singh, S.: The DARPA Urban Challenge: Autonomous Vehicles in City Traffic, vol. 56. Springer, Berlin (2009)

    Google Scholar 

  7. Chung, T.H., Jones, K.D., Day, M.A., Jones, M., Clement, M.: 50 vs. 50 by 2015: Swarm Vs. Swarm UAV Live-Fly Competition at the Naval Postgraduate School, pp. 1792–1811. AUVSI North America, Washington, DC (2013)

    Google Scholar 

  8. Chung, T.H., Clement, M., Day, M.A., Jones, K.D., Davis, D.T., Jones, M.: Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs. In: 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden (2016)

    Google Scholar 

  9. Cole, D.T., Sukkarieh, S., Göktogan, A.H., Stone, H., Hardwick-Jones, R.: The development of a real-time modular architecture for the control of uav teams. In: Field and Service Robotics, pp. 465–476. Springer, Berlin (2006)

    Google Scholar 

  10. Day, M.A., Clement, M.R., Russo, J.D., Davis, D., Chung, T.H.: Multi-UAV software systems and simulation architecture. In: 2015 International Conference on Unmanned Aerial Systems, pp. 426–435. IEEE, Denver, CO (2015)

    Google Scholar 

  11. Gupta, L., Jain, R., Vaszkun, G.: Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 18(2), 1123–1152 (2015)

    Article  Google Scholar 

  12. Han, J., Xu, Y., Di, L., Chen, Y.: Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J. Intell. Robot. Syst. 70(1–4), 401–410 (2013)

    Article  Google Scholar 

  13. Hauert, S., Leven, S., Zufferey, J.C., Floreano, D.: The swarming micro air vehicle network (SMAVNET) project (2015)

    Google Scholar 

  14. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: Robocup: The robot world cup initiative. In: Proceedings of the first international conference on Autonomous agents, pp. 340–347. ACM (1997)

    Google Scholar 

  15. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: Robocup: a challenge problem for AI. AI Mag. 18(1), 73 (1997)

    Google Scholar 

  16. Kownacki, C., Odziej, D.: Flocking algorithm for fixed-wing unmanned aerial vehicles. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds.) Advances in Aerospace Guidance, Navigation and Control SE - 24. Flocking A, pp. 415–431. Springer International Publishing (2015). http://dx.doi.org/10.1007/978-3-319-17518-8_24

  17. Madey, A.G., Madey, G.R.: Design and evaluation of UAV swarm command and control strategies. In: Proceedings of the Agent-Directed Simulation Symposium, p. 7. Society for Computer Simulation International (2013)

    Google Scholar 

  18. Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: implemented infrastructure for MAS research. Auton. Agents Multi-Agent Syst. 7(1–2), 101–120 (2003)

    Article  Google Scholar 

  19. Nowak, D.J., Price, I., Lamont, G.B.: Self organized UAV swarm planning optimization for search and destroy using swarmfare simulation. In: 2007 Winter Simulation Conference, pp. 1315–1323. IEEE (2007)

    Google Scholar 

  20. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  21. Reeder, M.: Special issue on the international micro air vehicle conference and flight competition 2014 (IMAV 2014). Int. Jo. Micro Air Veh. 6(4), i–ii (2014)

    Article  Google Scholar 

  22. Roberts, J., Frousheger, D., Williams, B., Campbell, D., Walker, R.: How the outback challenge was won: the motivation for the UAV challenge outback rescue, the competition mission, and a summary of the six events (2016)

    Article  Google Scholar 

  23. Stone, P.: Whats hot at robocup. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  24. UAV Challenge. https://uavchallenge.org/ (2016). Accessed: 25 June 2016

  25. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T., Vicsek, T.: Outdoor flocking and formation flight with autonomous aerial robots. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3866–3873. IEEE (2014)

    Google Scholar 

  26. Yahyavi, A., Kemme, B.: Peer-to-peer architectures for massively multiplayer online games: a survey. ACM Comput. Surv. (CSUR) 46(1), 9 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane T. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, D.T., Chung, T.H., Clement, M.R., Day, M.A. (2018). Multi-swarm Infrastructure for Swarm Versus Swarm Experimentation. In: Groß, R., et al. Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-73008-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73008-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73006-6

  • Online ISBN: 978-3-319-73008-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics