Abstract
We consider the maximum m-Peripatetic Salesman Problem (MAX m-PSP), which is a natural generalization of the classic Traveling Salesman Problem. The problem is strongly NP-hard. In this paper we propose two polynomial approximation algorithms for the MAX m-PSP with different and identical weight functions, correspondingly. We prove that for random inputs uniformly distributed on the interval [a, b] these algorithms are asymptotically optimal for \(m=o(n)\). This means that with high probability their relative errors tend to zero as the number n of the vertices of the graph tends to infinity. The results remain true for the distributions of inputs that minorize the uniform distribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ageev, A.A., Baburin, A.E., Gimadi, E.K.: A 3/4 approximation algorithms for finding two disjoint Hamiltonian cycles of maximum weight. J. Appl. Indust. Math. 1(2), 142–147 (2007)
Angluin, D., Valiant, L.G.: Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comp. Syst. Sci. 18(2), 155–193 (1979)
Baburin, A.E., Gimadi, E.K.: On the asymptotic optimality of an algorithm for solving the maximum \(m\)-PSP in a multidimensional euclidean space. Proc. Steklov Inst. Math. 272(1), 1–13 (2011)
Bollobás, B., Fenner, T.I., Frieze, A.M.: An algorithm for finding Hamilton paths and cycles in random graphs. Combinatorica 7, 327–341 (1987)
Climer, S., Zhang, W.: Rearrangement clustering: pitfalls, remedies, and applications. JMLR 7, 919–943 (2006)
De Kort, J.B.J.M.: Upper bounds and lower bounds for the symmetric K-Peripatetic Salesman Problem. Optimization 23(4), 357–367 (1992)
De Kort, J.B.J.M.: A branch and bound algorithm for symmetric 2-Peripatetic Salesman Problems. Eur. J. Oper. Res. 70, 229–243 (1993)
Duchenne, E., Laporte, G., Semet, F.: The undirected m-Peripatetic Salesman Problem: polyhedral results and new algorithms. J. Oper. Res. 55(5), 949–965 (2007)
Erdős, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)
Gimadi, E.K., Glazkov, Y.V., Tsidulko, O.Y.: The probabilistic analysis of an algorithm for solving the m-planar 3-dimensional assignment problem on one-cycle permutations. J. Appl. Ind. Math. 8(2), 208–217 (2014)
Gimadi, E.K., Istomin, A.M., Tsidulko, O.Y.: On asymptotically optimal approach to the m-Peripatetic Salesman Problem on random inputs. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 136–147. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_11
Gimadi, E.K., Ivonina, E.V.: Approximation algorithms for the maximum 2-Peripatetic Salesman Problem. J. Appl. Ind. Math. 6(3), 295–305 (2012)
Glebov, A.N., Gordeeva, A.V.: An algorithm with approximation ratio 5/6 for the metric maximum m-PSP. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 159–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_13
Glebov, A.N., Zambalaeva, D.Z.: A polynomial algorithm with approximation ratio 7/9 for the maximum two Peripatetic Salesmen Problem. J. Appl. Ind. Math. 6(1), 69–89 (2012)
Johnson, D.S., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.: Compressing large boolean matrices using reordering techniques. In: 30th International Conference on Very Large Databases (VLDB), pp. 13–23 (2004)
Johnson, O., Liu, J.: A traveling salesman approach for predicting protein functions. Source Code Biol. Med. 1(3), 9–16 (2006)
Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52(4), 602–626 (2005)
Komlos, J., Szemeredi, E.: Limit distributions for the existence of Hamilton circuits in a random graph. Discrete Math. 43, 55–63 (1983)
Krarup, J.: The Peripatetic Salesman and some related unsolved problems. In: Combinatorial Programming, Methods and Applications, pp. 173–178. Reidel, Dordrecht (1975)
Petrov, V.V.: Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Clarendon Press, Oxford (1995)
Ray, S.S., Bandyopadhyay, S., Pal, S.K.: Gene ordering in partitive clustering using microarray expressions. J. Biosci. 32(5), 1019–1025 (2007)
Song, L., Zhang, Yu., Peng, X., Wang, Z., Gildea, D.: AMR-to-text generation as a Traveling Salesman Problem. In: Proceedings of 2016 Conference on Empirical Methods in Natural Language Processing (2016)
Acknowledgments
The authors are supported by the Russian Foundation for Basic Research grants 16-31-00389 and 15-01-00976, Russian Ministry of Science and Education under 5-100 Excellence Program, and the grant of Presidium of RAS (program 8, project 227).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Gimadi, E.K., Tsidulko, O.Y. (2018). Approximation Algorithms for the Maximum m-Peripatetic Salesman Problem. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2017. Lecture Notes in Computer Science(), vol 10716. Springer, Cham. https://doi.org/10.1007/978-3-319-73013-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-73013-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73012-7
Online ISBN: 978-3-319-73013-4
eBook Packages: Computer ScienceComputer Science (R0)