Skip to main content

Self-managing Internet of Things

  • Conference paper
  • First Online:
SOFSEM 2018: Theory and Practice of Computer Science (SOFSEM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10706))

Abstract

Internet of Things (IoT) are in full expansion. Applications range from factory floors to smart city environments. IoT applications consist of battery powered small computing devices (motes) that communicate wirelessly and interact with the environment through sensors and actuators. A key challenge that IoT engineers face is how to manage such systems that are subject to inherent uncertainties in their operation contexts, such as interferences and dynamic traffic in the network. Often these uncertainties are difficult to predict at development time. In practice, IoT applications are therefore typically over-provisioned at deployment; however, this leads to inefficiency. In this paper, we make a case for IoT applications that manage themselves at runtime to deal with uncertainties. We contribute: (1) a set of concerns that motivate the need for self-management for IoT systems, (2) three initial approaches that illustrate the potential of realising self-managing IoT systems, and (3) a set of open challenges for future research on self-adaptation in IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.versasense.com.

  2. 2.

    https://people.cs.kuleuven.be/danny.weyns/software/DeltaIoT/.

References

  1. Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 27–47. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_2

    Chapter  Google Scholar 

  2. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_3

    Chapter  Google Scholar 

  3. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_1

    Chapter  Google Scholar 

  4. Dobson, S., Denazis, S., Fernández, A., Gaïti, D., Gelenbe, E., Massacci, F., Nixon, P., Saffre, F., Schmidt, N., Zambonelli, F.: A survey of autonomic communications. ACM Trans. Auton. Adapt. Syst. 1(2), 223–259 (2006). http://doi.acm.org/10.1145/1186778.1186782

    Article  Google Scholar 

  5. Dohler, M., Barthel, D., Watteyne, T., Winter, T.: RFC5548: routing requirements for urban low-power and lossy networks (2009)

    Google Scholar 

  6. Dustdar, S., Nastic, S., Scekic, O.: A novel vision of cyber-human smart city. In: 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb), pp. 42–47, October 2016

    Google Scholar 

  7. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_9

    Chapter  Google Scholar 

  8. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)

    Article  Google Scholar 

  9. Hughes, D., Thoelen, K., Maerien, J., Matthys, N., Del Cid, J., Horre, W., Huygens, C., Michiels, S., Joosen, W.: LooCI: the loosely-coupled component infrastructure. In: Proceeding of the 11th IEEE International Symposium on Network Computing and Applications, pp. 236–243 (2012)

    Google Scholar 

  10. Jackson, M.: The meaning of requirements. Ann. Softw. Eng. 3, 5–21 (1997). http://dl.acm.org/citation.cfm?id=590564.590577

    Article  Google Scholar 

  11. Kalpakis, K., Dasgupta, K., Namjoshi, P.: Maximum lifetime data gathering and aggregation in wireless sensor networks. Proc. IEEE Netw. 2, 685–696 (2002)

    MATH  Google Scholar 

  12. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future of Software Engineering, FOSE 2007. IEEE Computer Society (2007)

    Google Scholar 

  14. de Lemos, R., et al.: Software engineering for self-adaptive systems: research challenges in the provision of assurances. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-adaptive Systems III. LNCS, vol. 9640. Springer, Heidelberg (2018, forthcoming). https://people.cs.kuleuven.be/danny.weyns/papers/2018SEfSAS.pdf

  15. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

    Chapter  Google Scholar 

  16. Mahdavi-Hezavehi, S., Avgeriou, P., Weyns, D.: A classification of current architecture-based approaches tackling uncertainty in self-adaptive systems with multiple requirements. In: Managing Trade-offs in Adaptable Software Architectures. Elsevier (2016)

    Google Scholar 

  17. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, WSNA 2002, pp. 88–97. ACM, New York (2002). http://doi.acm.org/10.1145/570738.570751

  18. Martocci, J., Mil, P., Riou, N., Vermeylen, W.: Building automation routing requirements in low-power and lossy networks (5867) (2010)

    Google Scholar 

  19. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-based runtime software evolution. In: International Conference on Software Engineering, ICSE 1998. IEEE Computer Society (1998). http://dl.acm.org/citation.cfm?id=302163.302181

  20. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modelling of self-adaptive systems: a taxonomy and an example of availability evaluation. In: International Conference on Performance Engineering, ICPE 2014 (2014)

    Google Scholar 

  21. Pister, K., Thubert, P., Dwars, S., Phinney, T.: Industrial routing requirements in low-power and lossy networks. Technical report (2009)

    Google Scholar 

  22. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless microsensor networks. IEEE Sig. Process. Mag. 19(2), 40–50 (2002)

    Article  Google Scholar 

  23. Rajagopalan, R., Varshney, P.: Data-aggregation techniques in sensor networks: a survey. IEEE Commun. Surv. Tutor. 8(4), 48–63 (2006)

    Article  Google Scholar 

  24. Ramachandran, G.S., Matthys, N., Daniels, W., Joosen, W., Hughes, D.: Building dynamic and dependable component-based internet-of-things applications with dawn. In: 2016 19th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE), pp. 97–106, April 2016

    Google Scholar 

  25. Ramachandran, G.S., Proenca, J., Daniels, W., Pickavet, M., Staessens, D., Huygens, C., Joosen, W., Hughes, D.: Hitch hiker 2.0: a binding model with flexible data aggregation for the internet-of-things. J. Internet Serv. Appl. 7(1), 4 (2016). http://dx.doi.org/10.1186/s13174-016-0047-7

    Article  Google Scholar 

  26. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research challenges. Trans. Auton. Adapt. Syst. 4, 14:1–14:42 (2009)

    Google Scholar 

  27. Tan, H.O., Körpeoǧlu, I.: Power efficient data gathering and aggregation in wireless sensor networks. SIGMOD Rec. 32(4), 66–71 (2003). http://doi.acm.org/10.1145/959060.959072

    Article  Google Scholar 

  28. Watteyne, T., Palattella, M., Grieco, L.: Using IEEE 802.15.4e time-slotted channel hopping (TSCH) in the Internet of Things (IoT): problem statement. RFC 7554, RFC Editor, May 2015

    Google Scholar 

  29. Watteyne, T., Weiss, J., Doherty, L., Simon, J.: Industrial IEEE802.15.4e networks: performance and trade-offs. In: 2015 IEEE International Conference on Communications (ICC), pp. 604–609, June 2015

    Google Scholar 

  30. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and future challenges. In: Dick Taylor, R., Kang, K., Cha, S. (eds.) Handbook of Software Engineering. Springer, Heidelberg (2018, forthcoming). https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf

  31. Weyns, D., et al.: Perpetual assurances in self-adaptive systems. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-adaptive Systems III. LNCS, vol. 9640. Springer, Heidelberg (2018, forthcoming). https://people.cs.kuleuven.be/danny.weyns/papers/2016SEfSAS.pdf

  32. Weyns, D., Iftikhar, U., Söderlund, J.: Do external feedback loops improve the design of self-adaptive systems? A controlled experiment. In: International Symposium on Software Engineering of Self-managing and Adaptive Systems, SEAMS 2013 (2013)

    Google Scholar 

  33. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal specification of distributed self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 7(1), 8:1–8:61 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the technical staff of VersaSense (https://www.versasense.com/) for the fruitful collaborations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny Weyns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weyns, D., Ramachandran, G.S., Singh, R.K. (2018). Self-managing Internet of Things. In: Tjoa, A., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds) SOFSEM 2018: Theory and Practice of Computer Science. SOFSEM 2018. Lecture Notes in Computer Science(), vol 10706. Edizioni della Normale, Cham. https://doi.org/10.1007/978-3-319-73117-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73117-9_5

  • Published:

  • Publisher Name: Edizioni della Normale, Cham

  • Print ISBN: 978-3-319-73116-2

  • Online ISBN: 978-3-319-73117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics