Skip to main content

Testing, Prediction, and Cause in Econometric Models

  • Conference paper
  • First Online:
Econometrics for Financial Applications (ECONVN 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 760))

Included in the following conference series:

  • 2549 Accesses

Abstract

Classical statistical approaches used widely in econometrics centering around parameter estimation, hypothesis testing, and p-values should be abandoned. In their place, predictive modeling should be used. A predictive model answer the question all users of statistics have: if I change x, or leave it out of my model, what does this do to the uncertainty in y? Classical methods never answer that question directly. The reason why this is so, and why the predictive approach does, is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benjamin, D.J., Berger, J., Johannesson, M., Nosek, B.A., Wagenmakers, E.-J., Berk, R., Bollen, K., et al.: Redefine Statistical Significance. PsyArXiv, psyarxiv.com/mky9j (2017)

  2. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (2000)

    MATH  Google Scholar 

  3. Briggs, W.M.: On probability leakage. arXiv, arXiv.org/abs/1201.3611 (2013)

  4. Briggs, W.M.: Uncertainty: The Soul of Modeling. Probability & Statistics. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  5. Briggs, W.M.: The substitute for p-values. JASA 112(519), 897–898 (2017)

    Article  MathSciNet  Google Scholar 

  6. St Clair, K.: Textbook Data for Math 215. http://people.carleton.edu/~kstclair/Math215.html. Accessed 27 Aug 2017

  7. Fisher, R.A.: Statistical Methods for Research Workers, 14th edn. Oliver and Boyd, Edinburgh (1970)

    MATH  Google Scholar 

  8. Gigerenzer, G.: Mindless statistics. J. Socio Econ. 33, 587–606 (2004)

    Article  Google Scholar 

  9. Gneiting, T., Raftery, A.E., Balabdaoui, F.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 243–268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gneiting, T., Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation. JASA 102, 359–378 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hájek, A.: Mises Redux–Redux: fifteen arguments against finite frequentism. Erkenntnis 45, 209–227 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Hájek, A.: Fifteen arguments against hypothetical frequentism. Erkenntnis 70, 211–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  14. Keynes, J.M.: A Treatise on Probability. Dover Phoenix Editions, New York (2004)

    MATH  Google Scholar 

  15. Laplace, P.S.: A Philosophical Essay on Probabilities. Dover, New York (1996)

    MATH  Google Scholar 

  16. Lash, T.L.: The harm done to reproducibility by the culture of null hypothesis significance testing. Am. J. Epidemiol. 186(5), 1–9 (2017)

    Google Scholar 

  17. Nau, R.F.: De Finetti was right: probability does not exist. Theor. Decis. 51, 89–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Neyman, J.: Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. Lond. A 236, 333–380 (1937)

    Article  MATH  Google Scholar 

  19. Peng, J.: The reproducibility crisis in science: a statistical counterattack. Significance 12, 30–32 (2015)

    Article  Google Scholar 

  20. Ziliak, S.T., McCloskey, D.N.: The Cult of Statistical Significance. University of Michigan Press, Ann Arbor (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Briggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Briggs, W.M. (2018). Testing, Prediction, and Cause in Econometric Models. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-73150-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73150-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73149-0

  • Online ISBN: 978-3-319-73150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics