Skip to main content

Efficient Parameter-Estimating Algorithms for Symmetry-Motivated Models: Econometrics and Beyond

  • Conference paper
  • First Online:
Econometrics for Financial Applications (ECONVN 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 760))

Included in the following conference series:

Abstract

It is known that symmetry ideas can explain the empirical success of many non-linear models. This explanation makes these models theoretically justified and thus, more reliable. However, the models remain non-linear and thus, identification or the model’s parameters based on the observations remains a computationally expensive nonlinear optimization problem. In this paper, we show that symmetry ideas can not only help to select and justify a nonlinear model, they can also help us design computationally efficient almost-linear algorithms for identifying the model’s parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  2. Feigenbaum, J.A.: A statistical analyses of log-periodic precursors to financial crashes. Quant. Financ. 1(5), 527–532 (2001)

    Article  Google Scholar 

  3. Feigenbaum, J.A., Freund, P.: Discrete scaling in stock markets before crashes. Int. J. Mod. Phys. 12, 57–60 (1996)

    MATH  Google Scholar 

  4. Gazola, L., Fenandez, C., Pizzinga, A., Riera, R.: The log-periodic-AR (1)-GARCH (1,1) model for financial crashes. Eur. Phys. J. B 61(3), 355–362 (2008)

    Article  MATH  Google Scholar 

  5. Geraskin, P., Fantazzinin, D.: Everything you always wanted to know about log periodic power laws for bubble modelling but were afraid to ask. Eur. J. Financ. 19(5), 366–391 (2013)

    Article  Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Leaning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  7. Jiang, Z.Q., Zhou, W.H., Sornette, D., Woodard, R., Bastiaensen, K., Cauwels, P.: Bubble diagnosis and prediction of the 2005–2007 and 2008–2009 Chinese stock market bubbles. J. Econ. Behav. Organ. 74, 149–162 (2010)

    Article  Google Scholar 

  8. Johansen, A.: Characterization of large price variations in financial markets. Phys. A 324, 157–166 (2003)

    Article  MATH  Google Scholar 

  9. Johansen, A., Ledoit, O., Sornette, D.: Crashes as critical points. Int. J. Theor. Appl. Financ. 3(2), 219–255 (2000)

    Article  MATH  Google Scholar 

  10. Johansen, A., Sornette, D.: Financial anti-bubbles: log-periodicity in Gold and Nikkei collapses. Int. J. Mod. Phys. C 10(4), 563–575 (1999)

    Article  Google Scholar 

  11. Johansen, A., Sornette, D.: Large stock market price drawdowns are outliers. J. Risk 4(2), 69–110 (2002)

    Article  Google Scholar 

  12. Johansen, A., Sornette, D.: Endogenous versus exogenous crashes in financial markets. In: Contemporary Issues in International Finance. Nova Science Publishers (2004). Reprinted as a special issue of Brussels Economic Review, vol. 49, No. 3/4 2006

    Google Scholar 

  13. Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  14. Kreinovich, V., Nguyen, H.T., Sriboonchitta, S.: Log-periodic power law as a predictor of catastrophic events: a new mathematical justification. In: Proceedings of the International Conference on Risk Analysis in Meteorological Disasters, RAMD 2014, Nanjing, China, 12–13 October 2014 (2014)

    Google Scholar 

  15. Kreinovich, V., Swenson, T., Elentukh, A.: Interval approach to testing software. Interval Comput. 2, 90–109 (1994)

    Google Scholar 

  16. Nguyen, H.T., Kreinovich, V.: Applications of Continuous Mathematics to Computer Science. Kluwer, Dordrecht (1997)

    Book  MATH  Google Scholar 

  17. Papadimitriou, C.H.: Computational Complexity. Pearson, Boston (1993)

    MATH  Google Scholar 

  18. Pardalos, P.: Complexity in Numerical Optimization. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  19. Poole, D.: Linear Algebra: A Modern Introduction. Cengage Learning, Independence (2014)

    Google Scholar 

  20. Robinson, J.C.: An Introduction to Ordinary Differential Equations. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Sornette, D.: Critical market crashes. Phys. Rep. 378(1), 1–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sornette, D.: Why Stock Markets Crash: Critical Events in Compelx Financial Systems. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  23. Sornette, D., Johansen, A.: Significance of log-periodic precursors to financial crashes. Quant. Financ. 1(4), 452–471 (2001)

    Article  Google Scholar 

  24. Sornette, D., Zhou, W.Z.: The US 2000–2002 market descent: how much longer and deeper? Quant. Financ. 2(6), 468–481 (2002)

    Google Scholar 

  25. Weatherall, J.M.: The Physics of Wall Street: The History of Predicting the Unpredictable. Houghton Mifflin Harcourt, New York (2013)

    Google Scholar 

  26. Zhou, W.Z., Sornette, D.: Evidence of a worldwide stock market log-periodic anti-bubble since mid-2000. Phys. A 330(3), 543–583 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge the partial support of the Center of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Thailand. This work was also supported in part by the National Science Foundation grant HRD-1242122 (Cyber-ShARE Center of Excellence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladik Kreinovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kreinovich, V., Ly, A.H., Kosheleva, O., Sriboonchitta, S. (2018). Efficient Parameter-Estimating Algorithms for Symmetry-Motivated Models: Econometrics and Beyond. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760. Springer, Cham. https://doi.org/10.1007/978-3-319-73150-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73150-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73149-0

  • Online ISBN: 978-3-319-73150-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics