Abstract
In this paper an Ant Colony Optimization (ACO) algorithm for parameter identification of cultivation process models is proposed. In computational point of view it is a hard problem. To be solved problem with a high accuracy in reasonable time, metaheuristic techniques are used. The influence of ACO algorithm parameters, namely number of agents (ants) and number of iterations, to the quality of achieved solution is investigated. As a case study an E. coli fed-batch cultivation process is explored. Based on the parameter identification of E. coli MC4110 cultivation process model some conclusions for the optimal ACO parameter settings are done.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alajmi, A., Wright, J.: Selecting the most efficient genetic algorithm sets in solving unconstrained building optimization problem. Int. J. Sustain. Built Environ. 3(1), 18–26 (2014)
Barbosa, H.J.C.: Ant Colony Optimization – Techniques and Applications. InTech, Rijeka (2013)
de Moraes Barbosa, E.B., Senne, E.L.F., Silva, M.B.: Improving the performance of metaheuristics: an approach combining response surface methodology and racing algorithms. Int. J. Eng. Math. 2015, 1–9 (2015). Article ID 167031
Cooray, P.L.N.U., Rupasinghe, T.D.: Machine learning-based parameter tuned genetic algorithm for energy minimizing vehicle routing problem. J. Ind. Eng. 2017, 1–13 (2017). Article ID 3019523
Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, Y. (eds.) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 146, 2nd edn., pp. 227–263. Springer, New York (2010)
Fidanova, S., Lirkov, I.: 3D protein structure prediction. J. An. Univ. de Vest Timis. Ser. Mat. Inform. XLVII(2), 33–46 (2009)
Fidanova, S.: An improvement of the grid-based hydrophobic-hydrophilic model. Int. J. Bioautomation 14(2), 147–156 (2010)
Haroun, S.A., Jamal, B., Hicham, E.H.: A performance comparison of GA and ACO applied to TSP. Int. J. Comput. Appl. 117(19), 28–35 (2015)
Nowotniak, R., Kucharski, J.: GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem. Bull. Pol. Acad. Sci. 60(2), 323–330 (2012)
Rexhepi, A., Maxhuni, A., Dika, A.: Analysis of the impact of parameters values on the Genetic Algorithm for TSP. IJCSI Int. J. Comput. Sci. 10(1/3), 158–164 (2013)
Roeva, O., Pencheva, T., Tzonkov, S., Hitzmann, B.: Functional state modelling of cultivation processes: dissolved oxygen limitation state. Int. J. Bioautomation 19(1), Suppl. 1, S93–S112 (2015)
Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 610, pp. 107–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21133-6_7
Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: IEEE Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 371–376 (2013)
Saleem, W., Kharal, A., Ahmad, R., Saleem, A.: Comparison of ACO and GA techniques to generate neural network based Bezier-PARSEC parameterized airfoil. In: Proceedings of the 11th International Conference on Natural Computation (ICNC) (2015). https://doi.org/10.1109/ICNC.2015.7378152
Sharvani, G.S., Ananth, A.G., Rangaswamy, T.M.: Ant colony optimization based modified termite algorithm (MTA) with efficient stagnation avoidance strategy for manets. Int. J. Appl. Graph Theor. Wirel. Ad Hoc Netw. Sens. Netw. 4(2/3), 39–50 (2012)
Veček, N., Mernika, M., Filipičb, B., Črepinšek, M.: Parameter tuning with chess rating system (CRS-Tuning) for meta-heuristic algorithms. Inf. Sci. 372, 446–469 (2016)
Yang, X.S., Deb, S., Loomes, M., Karamanoglu, M.: A framework for self-tuning optimization algorithms. Neural Comput. Appl. 23(7–8), 2051–2057 (2013)
Zhang, Y., Ma, Q., Sakamoto, M., Furutani, H.: Effects of population size on the performance of genetic algorithms and the role of crossover. Artif. Life Robot. 15, 239–243 (2010). https://doi.org/10.1007/s10015-010-0836-1
Acknowledgments
Work presented here is partially supported by the Bulgarian National Scientific Fund under Grants DFNI I02/20 “Efficient Parallel Algorithms for Large Scale Computational Problems” and “New Instruments for Knowledge Discovery from Data, and their Modelling” DN 02/10.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Fidanova, S., Roeva, O. (2018). Influence of Ant Colony Optimization Parameters on the Algorithm Performance. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-73441-5_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73440-8
Online ISBN: 978-3-319-73441-5
eBook Packages: Computer ScienceComputer Science (R0)