Abstract
This work is devoted to numerical studies on an algebraic multigrid preconditioned GMRES method for solving the linear algebraic equations arising from a space–time finite element discretization of the heat equation using h–adaptivity on tetrahedral meshes. The finite element discretization is based on a Galerkin–Petrov variational formulation using piecewise linear finite elements simultaneously in space and time. In this work, we focus on h–adaptivity relying on a residual based a posteriori error estimation, and study some important components in the algebraic multigrid method for solving the space–time finite element equations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreev, R.: Wavelet-in-time multigrid-in-space preconditioning of parabolic evolution equations. SIAM J. Sci. Comput. 38(1), A216–A242 (2016)
Arnold, D.N., Mukherjee, A., Pouly, L.: Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)
Bank, R.E., Vassilevski, P.S., Zikatanov, L.T.: Arbitrary dimension convection-diffusion schemes for space-time discretizations. J. Comput. Appl. Math. 310, 19–31 (2017)
Bey, J.: Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)
Briggs, W.L., Henson, V.E., McCormick, S.F.: A multigrid tutorial. SIAM, Philadelphia (2000)
Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)
Ellis, T.E.: Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics. Ph.D. thesis. University of Texas at Austin (2016)
Ellis, T.E., Demkowicz, L., Chan, J.: Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems. Comput. Math. Appl. 68(11), 1530–1549 (2014)
Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28(1), 43–77 (1991)
Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)
Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Math. 66(3), 339–363 (1988)
Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution problems. Comput. Methods Appl. Math. 306, 342–363 (2016)
MacLachlan, S., Saad, Y.: A greedy strategy for coarse-grid selection. SIAM J. Sci. Comput. 29(5), 1825–1853 (2007)
Moore, P.K.: A posteriori error estimation with finite element semi-and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31(1), 149–169 (1994)
Neumüller, M.: Space-time methods: fast solvers and applications. Ph.D. thesis. TU Graz (2013)
Neumüller, M., Steinbach, O.: Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods. Comput. Vis. Sci. 14, 189–205 (2011)
Popa, C.: Algebraic multigrid smoothing property of Kaczmarz’s relaxation for general rectangular linear systems. Electron. Trans. Numer. Anal. 29, 150–162 (2007)
Schmich, M., Vexler, B.: Adaptivity with dynamic meshes for space-time finite element discretizations of parabolic equations. SIAM J. Sci. Comput. 30(1), 369–393 (2008)
Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)
Steinbach, O.: Space-time finite element methods for parabolic problems. Comput. Methods Appl. Math. 15, 551–566 (2015)
Steinbach, O., Yang, H.: An adaptive space-time finite element method for solving the heat equation, Technical report. TU Graz (2017, in preparation)
Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)
Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford Unversity Press, Oxford (2013)
Zhang, S.: Multi-level iterative techniques. Ph.D. thesis. Penn State University (1988)
Acknowledgements
This work has been supported by the Austrian Science Fund (FWF) under the Grant SFB Mathematical Optimisation and Applications in Biomedical Sciences.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Steinbach, O., Yang, H. (2018). An Algebraic Multigrid Method for an Adaptive Space–Time Finite Element Discretization. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-73441-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73440-8
Online ISBN: 978-3-319-73441-5
eBook Packages: Computer ScienceComputer Science (R0)