Skip to main content

Computational Modelling of the Full Length hIFN-\(\gamma \) Homodimer

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

Abstract

Human interferon gamma (hIFN-\(\gamma \)) is an important signalling molecule, which plays a key role in the formation and modulation of immune response. The controversial conclusions concerning the function of hIFN-\(\gamma \) C-termini as well as the lack of structural information about this domain motivated us to perform molecular dynamics simulations in order to model the structure of the hIFN-\(\gamma \) C-terminal part. The simulations were carried out with the CHARMM22 force field, starting from a fully extended conformation of the C-termini. They showed unambiguously that the C-termini tend to approach the globular part of the protein, so that the whole hIFN-\(\gamma \) molecule adopts a more compact conformation. The energetic favourability of the more compact conformations of the whole cytokine was also confirmed by means of free energy perturbation simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altobelli, G., Nacheva, G., Todorova, K., Ivanov, I., Karshikoff, A.: Role of the C-terminal chain in human interferon\(\gamma \) stability: an electrostatic study. Proteins: Struct. Funct. Bioinform. 43(2), 125–133 (2001)

    Article  Google Scholar 

  2. Ciccotti, G., Ryckaert, J.: Molecular dynamics simulation of rigid molecules. Comput. Phys. Rep. 4(6), 346–392 (1986)

    Article  Google Scholar 

  3. Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W.F., Mark, A.E.: Peptide folding: when simulation meets experiment. Angew. Chem. Int. Ed. 38(1–2), 236–240 (1999)

    Article  Google Scholar 

  4. Dobeli, H., Gentz, R., Jucker, W., Garotta, G., Hartmann, D., Hochuli, E.: Role of the carboxy-terminal sequence on the biological activity of human immune interferon (ifn-\(\gamma \)). J. Biotechnol. 7(3), 199–216 (1988)

    Article  Google Scholar 

  5. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  Google Scholar 

  6. Feller, S.E., Zhang, Y., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103(11), 4613–4621 (1995)

    Article  Google Scholar 

  7. Grest, G.S., Kremer, K.: Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A 33, 3628–3631 (1986)

    Article  Google Scholar 

  8. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  9. Hummer, G., Pratt, L., Garcia, A.: Ion sizes and finite-size corrections for ionic-solvation free energies. J. Chem. Phys. 107, 9275–9277 (1997)

    Article  Google Scholar 

  10. Liu, P., Dehez, F., Cai, W., Chipot, C.: A toolkit for the analysis of free-energy perturbation calculations. J. Chem. Theory Comput. 8(8), 2606–2616 (2012)

    Article  Google Scholar 

  11. Lu, N., Kofke, D.A., Woolf, T.B.: Improving the efficiency and reliability of free energy perturbation calculations using overlap sampling methods. J. Comput. Chem. 25, 28–39 (2004)

    Article  Google Scholar 

  12. MacKerell Jr., A.D., Bashford, D., Bellott, M., et al.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  13. Nacheva, G., Todorova, K., Boyanova, M., Berzal-Herranz, A., Karshikoff, A., Ivanov, I.: Human interferon gamma: significance of the C-terminal flexible domain for its biological activity. Arch. Biochem. Biophys. 413(1), 91–98 (2003)

    Article  Google Scholar 

  14. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  15. Schrodinger, LLC, The PyMOL molecular graphics system, version 1.3r1 (2010). http://www.pymol.org

  16. Thiel, D., le Du, M.H., Walter, R., D’Arcy, A., Chène, C., Fountoulakis, M., Garotta, G., Winkler, F., Ealick, S.: Observation of an unexpected third receptor molecule in the crystal structure of human interferon-\(\gamma \) receptor complex. Structure 8, 927–936 (2000)

    Article  Google Scholar 

  17. Tsanev, R., Ivanov, I.: Immune Interferon: Properties and Clinical Application. CRC Press LLC, Boca Raton (2001)

    Book  Google Scholar 

  18. Tuckerman, M., Berne, B.J., Martyna, G.J.: Reversible multiple time scale molecular dynamics. J. Chem. Phys 97(3), 1990–2001 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

EL and NI acknowledge financial support under the Programme for Young Scientists’ Career Development at the Bulgarian Academy of Sciences (Grant DFNP-99/04.05.2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Lilkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Petkov, P., Lilkova, E., Ilieva, N., Nacheva, G., Ivanov, I., Litov, L. (2018). Computational Modelling of the Full Length hIFN-\(\gamma \) Homodimer. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics