Skip to main content

An Alternative Proof of a Strip Estimate for First-Order System Least-Squares for Interface Problems

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10665))

Included in the following conference series:

  • 1252 Accesses

Abstract

The purpose of this paper is an alternative proof of a strip estimate, used in Least-Squares methods for interface problems, as in [4] for a two-phase flow problem with incompressible flow in the subdomains. The Stokes flow problems in the subdomains are treated as first-order systems and a combination of \(H ({\text {div}})\)-conforming Raviart-Thomas and standard \(H^1\)-conforming elements were used for the discretization. The interface condition is built directly in the \(H ({\text {div}})\)-conforming space. Using the strip estimate, the homogeneous Least-Squares functional is shown to be equivalent to an appropriate norm allowing the use of standard finite element approximation estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold, D.N., Douglas, J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numerische Mathematik 45(1), 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, S., Neff, P., Pauly, D., Starke, G.: Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions. ESAIM: Control Optimisation Calc. Var. 22(1), 112–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, Z., Manteuffel, T., McCormick, S.: First-order system least squares for second-order partial differential equations: part II. SIAM J. Num. Anal. 34, 425–454 (1997)

    Article  MATH  Google Scholar 

  4. Bertrand, F.: Approximated Flux Boundary Conditions for Raviart-Thomas Finite Elements on Domains with Curved Boundaries and Applications to First-Order System Least Squares, Thesis (2014)

    Google Scholar 

  5. Bertrand, F.: Considerations for the finite element approximation of three-dimensional domains. In: Équations aux dérivées partielles et leurs applications Actes du colloque Edp-Normandie, Le Havre, pp. 185–195 (2015)

    Google Scholar 

  6. Bertrand, F., Münzenmaier, S., Starke, G.: First-order system least squares on curved boundaries: Lowest-order Raviart-Thomas elements. SIAM J. Num. Anal. 52(2), 880–894 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertrand, F., Münzenmaier, S., Starke, G.: First-order system least squares on curved boundaries: higher-order Raviart-Thomas elements. SIAM J. Num. Anal. 52(6), 3165–3180

    Google Scholar 

  8. Bertrand, F., Starke, G.: Parametric Raviart-Thomas elements for mixed methods on domains with curved surfaces. SIAM J. Num. Anal. 54(6), 3648–3667

    Google Scholar 

  9. Bochev, P., Gunzburger, M.: Analysis of least squares finite element methods for the Stokes equations. Math. Comput. 63(208), 479–506 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bochev, P., Gunzburger, M.: Least-Squares Finite Element Methods. Springer, New York (2009). https://doi.org/10.1007/b13382

    MATH  Google Scholar 

  11. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36519-5

    Book  MATH  Google Scholar 

  12. Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  13. Bramble, J., Lazarov, R., Pasciak, J.: A least-squares approach based on a discrete minus one inner product for first order systems. Math. Comput. Am. Math. Soc. 66(219), 935–955 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

    Book  MATH  Google Scholar 

  15. Cai, Z., Barry, L., Ping, W.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Num. Anal. 42(2), 843–859 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai, Z., Manteuffel, T.A., McCormick, S.F.: First-order system least squares for the Stokes equations, with application to linear elasticity. SIAM J. Num. Anal. 34(5), 1727–1741 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen, C., Dolzmann, D.: A posteriori error estimates for mixed FEM in elasticity. Numerische Mathematik 81(2), 187–209 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gross, S., Reichelt, V., Reusken, A.: A finite element based level set method for two-phase incompressible flows. Comput. Vis. Sci. 9(4), 239–257 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, S., Reusken, A.: Numerical Methods for Two-Phase Incompressible Flows. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19686-7

    Book  MATH  Google Scholar 

  20. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Num. Anal. 23, 562–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, J., Melenk, J.M., Wohlmuth, B., Zou, J.: Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl. Num. Math. 60, 19–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Münzenmaier, S., Starke, G.: First-order system least squares for coupled Stokes-Darcy flow. SIAM J. Num. Anal. 49, 387–404 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleurianne Bertrand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertrand, F. (2018). An Alternative Proof of a Strip Estimate for First-Order System Least-Squares for Interface Problems. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73441-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73440-8

  • Online ISBN: 978-3-319-73441-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics