Abstract
Correlation filter based tracking methods have achieved impressive performance in recent years, showing high efficiency and robustness to challenging situations which exhibit illumination variations and motion blur. However, how to reduce model drift phenomenon which is usually caused by object deformation, abrupt motion, heavy occlusion and out-of-view, is still an open problem. In this paper, we exploit the low dimensional complementary features and an adaptive online detector with the average peak-to-correlation energy to improve tracking accuracy and time efficiency. Specifically, we appropriately integrate several complementary features in the correlation filter based discriminative framework and combine with the global color histogram to further boost the overall performance. In addition, we adopt the average peak-to-correlation energy to determine whether to activate and update an online CUR filter for re-detecting the target. We conduct extensive experiments on challenging OTB-15 benchmark datasets, and experimental results demonstrate that the proposed method achieves promising results in terms of efficiency, accuracy and robustness while running at 46 FPS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: complementary learners for real-time tracking. In: CVPR, pp. 1401–1409 (2016)
Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR, pp. 2544–2550. IEEE (2010)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)
Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC. BMVA Press (2014)
Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. TPAMI 39(8), 1561–1575 (2017)
Danelljan, M., Häger, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)
Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR, pp. 1090–1097 (2014)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)
Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels, pp. 263–270 (2011)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2015)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI 34(7), 1409–1422 (2012)
Khan, F.S., Van de Weijer, J., Vanrell, M.: Modulating shape features by color attention for object recognition. IJCV 98(1), 49–64 (2012)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18
Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR, pp. 5388–5396 (2015)
Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. TIP 18(7), 1512–1523 (2009)
Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: CVPR (2017)
Wang, S., Zhang, Z.: Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling. JMLR 14(1), 2729–2769 (2013)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. TPAMI 37(9), 1834–1848 (2015)
Xu, M., Jin, R., Zhou, Z.: CUR algorithm for partially observed matrices. In: ICML, pp. 1412–1421 (2015)
Zhu, G., Wang, J., Wu, Y., Lu, H.: Collaborative correlation tracking. In: BMVC, p. 184-1 (2015)
Acknowledgments
This work is supported by the National Science Foundation of China under Grant No. 61321491, and Collaborative Innovation Center of Novel Software Technology and Industrialization.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Luo, X., Du, D., Wu, G. (2018). Robust and Real-Time Visual Tracking Based on Complementary Learners. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10705. Springer, Cham. https://doi.org/10.1007/978-3-319-73600-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-73600-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73599-3
Online ISBN: 978-3-319-73600-6
eBook Packages: Computer ScienceComputer Science (R0)