Skip to main content

Robust and Real-Time Visual Tracking Based on Complementary Learners

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10705))

Included in the following conference series:

  • 2958 Accesses

Abstract

Correlation filter based tracking methods have achieved impressive performance in recent years, showing high efficiency and robustness to challenging situations which exhibit illumination variations and motion blur. However, how to reduce model drift phenomenon which is usually caused by object deformation, abrupt motion, heavy occlusion and out-of-view, is still an open problem. In this paper, we exploit the low dimensional complementary features and an adaptive online detector with the average peak-to-correlation energy to improve tracking accuracy and time efficiency. Specifically, we appropriately integrate several complementary features in the correlation filter based discriminative framework and combine with the global color histogram to further boost the overall performance. In addition, we adopt the average peak-to-correlation energy to determine whether to activate and update an online CUR filter for re-detecting the target. We conduct extensive experiments on challenging OTB-15 benchmark datasets, and experimental results demonstrate that the proposed method achieves promising results in terms of efficiency, accuracy and robustness while running at 46 FPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: complementary learners for real-time tracking. In: CVPR, pp. 1401–1409 (2016)

    Google Scholar 

  2. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR, pp. 2544–2550. IEEE (2010)

    Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  4. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: BMVC. BMVA Press (2014)

    Google Scholar 

  5. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. TPAMI 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  6. Danelljan, M., Häger, G., Shahbaz Khan, F., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)

    Google Scholar 

  7. Danelljan, M., Shahbaz Khan, F., Felsberg, M., Van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR, pp. 1090–1097 (2014)

    Google Scholar 

  8. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  9. Hare, S., Saffari, A., Torr, P.H.S.: Struck: structured output tracking with kernels, pp. 263–270 (2011)

    Google Scholar 

  10. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  11. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. TPAMI 37(3), 583–596 (2015)

    Article  Google Scholar 

  12. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  13. Khan, F.S., Van de Weijer, J., Vanrell, M.: Modulating shape features by color attention for object recognition. IJCV 98(1), 49–64 (2012)

    Article  Google Scholar 

  14. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Google Scholar 

  15. Ma, C., Yang, X., Zhang, C., Yang, M.H.: Long-term correlation tracking. In: CVPR, pp. 5388–5396 (2015)

    Google Scholar 

  16. Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. TIP 18(7), 1512–1523 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: CVPR (2017)

    Google Scholar 

  18. Wang, S., Zhang, Z.: Improving CUR matrix decomposition and the Nyström approximation via adaptive sampling. JMLR 14(1), 2729–2769 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)

    Google Scholar 

  20. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. TPAMI 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  21. Xu, M., Jin, R., Zhou, Z.: CUR algorithm for partially observed matrices. In: ICML, pp. 1412–1421 (2015)

    Google Scholar 

  22. Zhu, G., Wang, J., Wu, Y., Lu, H.: Collaborative correlation tracking. In: BMVC, p. 184-1 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under Grant No. 61321491, and Collaborative Innovation Center of Novel Software Technology and Industrialization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangshan Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, X., Du, D., Wu, G. (2018). Robust and Real-Time Visual Tracking Based on Complementary Learners. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10705. Springer, Cham. https://doi.org/10.1007/978-3-319-73600-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73600-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73599-3

  • Online ISBN: 978-3-319-73600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics