Abstract
This paper examines content-based recommendation in domains exhibiting sequential topical structure. An example is educational video, including Massive Open Online Courses (MOOCs) in which knowledge builds within and across courses. Conventional content-based or collaborative filtering recommendation methods do not exploit courses’ sequential nature. We describe a system for video recommendation that combines topic-based video representation with sequential pattern mining of inter-topic relationships. Unsupervised topic modeling provides a scalable and domain-independent representation. We mine inter-topic relationships from manually constructed syllabi that instructors provide to guide students through their courses. This approach also allows the inclusion of multi-video sequences among the recommendation results. Integrating the resulting sequential information with content-level similarity provides relevant as well as diversified recommendations. Quantitative evaluation indicates that the proposed system, SeqSense, recommends fewer redundant videos than baseline methods, and instead emphasizes results consistent with mined topic transitions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Onah, D.F., Sinclair, J., Boyatt, R.: Dropout rates of massive open online courses: behavioural patterns. In: EDULEARN 2014 Proceedings, pp. 5825–5834 (2014)
UIL Policy Brief: Making large-scale literacy campaigns and programmes work (2016)
Cope, B., Kalantzis, M.: e-Learning Ecologies: Principles for New Learning and Assessment. Routledge, Abingdon (2017)
Levin, R.: Announcing Coursera for Business (2016). https://blog.coursera.org/announcing-coursera-for-business/. Accessed 19 July 2017
Zheng, S., Rosson, M.B., Shih, P.C., Carroll, J.M.: Understanding student motivation, behaviors and perceptions in MOOCs. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing. CSCW 2015, New York, NY, USA, pp. 1882–1895. ACM (2015)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)
Zhu, Q., Shyu, M.L., Wang, H.: Videotopic: content-based video recommendation using a topic model. In: ISM, pp. 219–222. IEEE Computer Society (2013)
Wang, Y., Agichtein, E., Benzi, M.: TM-LDA: efficient online modeling of latent topic transitions in social media. In: KDD, pp. 123–131. ACM (2012)
AlSumait, L., Barbará, D., Domeniconi, C.: On-line LDA: adaptive topic models for mining text streams with applications to topic detection and tracking. In: ICDM, pp. 3–12. IEEE (2008)
Ramesh, A., et al.: Understanding MOOC discussion forums using seeded LDA. In: Proceedings of the Ninth Workshop on Innovative Use of NLP for Building Educational Applications (2014)
Adcock, J., Cooper, M., Denoue, L., Pirsiavash, H., Rowe, L.A.: TalkMiner: a lecture webcast search engine. In: ACM Multimedia, pp. 241–250. ACM (2010)
Kinnebrew, J.S., Loretz, K.M., Biswas, G.: A contextualized, differential sequence mining method to derive students’ learning behavior patterns. J. Educ. Data Min. 5(1), 190–219 (2013)
Agrawal, R., Christoforaki, M., Gollapudi, S., Kannan, A., Kenthapadi, K., Swaminathan, A.: Mining videos from the web for electronic textbooks. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS, vol. 8478, pp. 219–234. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07248-7_16
Doroudi, S., Holstein, K., Aleven, V., Brunskill, E.: Sequence matters, but how exactly? A method for evaluating activity sequences from data. In: International Conference on Educational Data Mining EDM (2016)
Morales, C.R., Pérez, A.P., Soto, S.V., Martınez, C.H., Zafra, A.: Using sequential pattern mining for links recommendation in adaptive hypermedia educational systems. Curr. Dev. Technol.-Assist. Educ. 2, 1016–1020 (2006)
Pardos, Z.A., Tang, S., Davis, D., Le, C.V.: Enabling real-time adaptivity in MOOCs with a personalized next-step recommendation framework. In: ACM Conference on Learning @ Scale, pp. 23–32. ACM (2017)
Fournier-Viger, P., Faghihi, U., Nkambou, R., Nguifo, E.M.: CMRules: mining sequential rules common to several sequences. Knowl.-Based Syst. 25, 63–76 (2012)
Fournier-Viger, P., Gomariz, A., Gueniche, T., Mwamikazi, E., Thomas, R.: TKS: efficient mining of top-k sequential patterns. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS, vol. 8346, pp. 109–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53914-5_10
Fournier-Viger, P., Tseng, V.S.: TNS: mining top-k non-redundant sequential rules. In: SAC, pp. 164–166. ACM (2013)
Guille, A., Soriano-Morales, E.-P.: TOM: a library for topic modeling and browsing. In: Conférence sur l’Extraction et la Gestion des Connaissances, Reims, France, January 2016. Actes de la 16ème Conférence sur l’Extraction et la Gestion des Connaissances (2016). https://hal.archives-ouvertes.fr/hal-01442868/
Sievert, C., Shirley, K.E.: LDAvis: a method for visualizing and interpreting topics. In: Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pp. 63–70 (2014)
Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S.: A survey of sequential pattern mining. Data Sci. Pattern Recogn. 1, 54–77 (2017)
Manning, C.D., Raghavan, P., SchĂĽtze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)
Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)
Chuang, J., Manning, C.D., Heer, J.: “Without the clutter of unimportant words”: descriptive keyphrases for text visualization. ACM Trans. Comput.-Hum. Interact. 19(3), 19 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Bhatt, C., Cooper, M., Zhao, J. (2018). SeqSense: Video Recommendation Using Topic Sequence Mining. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10705. Springer, Cham. https://doi.org/10.1007/978-3-319-73600-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-73600-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73599-3
Online ISBN: 978-3-319-73600-6
eBook Packages: Computer ScienceComputer Science (R0)