Abstract
The known-item and ad-hoc video search tasks still represent challenging problems for the video retrieval community. During last years, the Video Browser Showdown identified several promising approaches that can improve the effectiveness of interactive video retrieval tools focusing on the tasks. We present a major revision of the SIRET interactive video retrieval tool that follows these findings. The new version employs three different query initialization approaches and provides several result visualization methods for effective navigation and browsing in sets of ranked keyframes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Only the supported set of labels L of a selected model M can be used to form the query (our UI keyword search element prompts the labels).
References
Amato, G., Falchi, F., Gennaro, C., Rabitti, F.: Searching and annotating 100M images with YFCC100M-HNFC6 and MI-file. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, CBMI 2017, New York, NY, USA, pp. 26:1–26:4. ACM (2017)
Awad, G., Butt, A., Fiscus, J., Michel, M., Joy, D., Kraaij, W., Smeaton, A.F., Quénot, G., Eskevich, M., Ordelman, R., Jones, G.J.F., Huet, B.: TRECVID 2017: evaluating ad-hoc and instance video search, events detection, video captioning and hyperlinking. In: Proceedings of TRECVID 2017. NIST (2017)
Barthel, K.U., Hezel, N., Mackowiak, R.: Navigating a graph of scenes for exploring large video collections. In: Tian, Q., Sebe, N., Qi, G.-J., Huet, B., Hong, R., Liu, X. (eds.) MMM 2016. LNCS, vol. 9517, pp. 418–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27674-8_43
Blaz̆ek, A., Lokoc̆, J., Kubon̆, D.: Video hunter at VBS 2017. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 493–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51814-5_47
Blažek, A., Lokoč, J., Skopal, T.: Video retrieval with feature signature sketches. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 25–36. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11988-5_3
Budíková, P., Batko, M., Zezula, P.: Fusion strategies for large-scale multi-modal image retrieval. Ttans. Large-Scale Data Knowl.-Centered Syst. 33, 146–184 (2017)
Cobârzan, C., Schoeffmann, K., Bailer, W., Hürst, W., Blažek, A., Lokoč, J., Vrochidis, S., Barthel, K.U., Rossetto, L.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimed. Tools Appl. 76(4), 5539–5571 (2016)
Lokoč, J., Blažek, A., Skopal, T.: Signature-based video browser. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8326, pp. 415–418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04117-9_49
Lokoč, J., Phuong, A.N., Vomlelová, M., Ngo, C.-W.: Color-sketch simulator: a guide for color-based visual known-item search. In: Cong, G., Peng, W.-C., Zhang, W.E., Li, C., Sun, A. (eds.) ADMA 2017. LNCS (LNAI), vol. 10604, pp. 754–763. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69179-4_53
Rossetto, L., Giangreco, I., Tănase, C., Schuldt, H., Dupont, S., Seddati, O.: Enhanced retrieval and browsing in the IMOTION system. In: Amsaleg, L., Guðmundsson, G.Þ., Gurrin, C., Jónsson, B.Þ., Satoh, S. (eds.) MMM 2017. LNCS, vol. 10133, pp. 469–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51814-5_43
Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE Multimed. 21(4), 8–13 (2014)
Schoeffmann, K., Hudelist, M.A., Huber, J.: Video interaction tools: a survey of recent work. ACM Comput. Surv. 48(1), 14 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, pp. 1–9 (2015)
Acknowledgments
This paper has been supported by Czech Science Foundation (GAČR) project Nr. 17-22224S and by grant SVV-2017-260451.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Lokoč, J., Kovalčík, G., Souček, T. (2018). Revisiting SIRET Video Retrieval Tool. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10705. Springer, Cham. https://doi.org/10.1007/978-3-319-73600-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-73600-6_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73599-3
Online ISBN: 978-3-319-73600-6
eBook Packages: Computer ScienceComputer Science (R0)