Skip to main content

Coarse-to-Fine Image Super-Resolution Using Convolutional Neural Networks

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10705))

Included in the following conference series:

Abstract

Convolutional neural networks (CNNs) have been widely applied to computer vision fields due to its excellent performance. CNN-based single image super resolution (SR) methods are also put into practice and outperform previous methods. In this paper, we propose a coarse-to-fine CNN method to boost the existing CNN-based SR methods. We design a cascaded CNN architecture with three stages. The first stage takes the low-resolution (LR) image as the input and outputs a high-resolution (HR) image, then the next stage similarly takes the high-resolution result as the input and produces a finer HR image. Finally, the last stage can obtain the finest HR image. Our architecture is trained as one entire CNN which combines three loss functions to optimize the gradient descent procedure. Experiments on ImageNet-based training samples validates the effectiveness of our method on the public benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irani, M., Peleg, S.: Improving resolution by image registration. Graph. Models Image Process. 53(3), 231–239 (1991)

    Article  Google Scholar 

  2. Wang, H., Gao, X., Zhang, K., Li, J.: Single image super-resolution using Gaussian process regression with dictionary-based sampling and student-t likelihood. IEEE Trans. Image Process. 26(7), 3556–3568 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberimorel, M.: Low complexity single-image super-resolution based on nonnegative neighbor embedding. In: British Machine Vision Conference, Guildford, Surrey, UK (2012)

    Google Scholar 

  4. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  5. Camponez, M.O., Salles, E.O.T., Sarcinellifilho, M.: Super-resolution image reconstruction using nonparametric Bayesian INLA approximation. IEEE Trans. Image Process. 21(8), 3491–3501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zeng, K., Yu, J., Wang, R., Li, C., Tao, D.: Coupled deep auto-encoder for single image super-resolution. IEEE Trans. Cybern. 47(1), 27–37 (2015)

    Article  Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  8. Zhou, F., Yang, W., Liao, Q.: Interpolation-based image super-resolution using multisurface fitting. IEEE Trans. Image Process. 21(7), 3312–3318 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tai, W., Liu, S., Brown, M.S., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2400–2407. IEEE, San Francisco, CA, USA (2010)

    Google Scholar 

  10. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chang, H., Yeung, D., Xiong, Y.: Super-resolution through neighbor embedding. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1063–6919. IEEE, Washington, DC, USA (2004)

    Google Scholar 

  12. Lai, W.-S., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. arXiv:1704.03915 [cs.CV]

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA, pp. 1097–1105 (2012)

    Google Scholar 

  14. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 28th IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Boston, MA, USA (2015)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  16. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A.P., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image super-resolution using a generative adversarial network. In: 28th IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Las Vegas, NV, USA (2016)

    Google Scholar 

  17. Goodfellow, I.J., Pougetabadie, J., Mirza, M., Xu, B., Wardefarley, D., Ozair, S., Courville, A.C., Bengio, Y.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, Montréal, Canada, pp. 2672–2680 (2014)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 5th International Conference on Learning Representations, San Diego, California, USA (2015)

    Google Scholar 

  19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654. IEEE, Las Vegas, Nevada, USA (2016)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 29th IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE, Las Vegas, Nevada, USA (2016)

    Google Scholar 

  21. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  22. Bevilacqua, M., Roumy, A., Guillemot, C., Alberimorel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In 23rd British Machine Vision Conference, Guildford, Surrey, UK, pp. 1–10 (2012)

    Google Scholar 

  23. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. Curves Surf. 6920, 711–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: International Conference on Computer Vision, Vancouver, Canada, pp. 416–423 (2001)

    Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: 27th International Conference on Machine Learning, Haifa, Israel, pp. 807–814 (2010)

    Google Scholar 

  26. Yangqing, J., Evan, S., Jeff, D., Sergey, K., Jonathan, L., Ross, G., Sergio, G., Trevor, D.: Caffe: convolutional architecture for fast feature embedding. In: 22nd ACM Multimedia, Orlando, Florida, USA, pp. 675–678 (2014)

    Google Scholar 

  27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 4(13), 600–612 (2004)

    Article  Google Scholar 

  28. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Google Scholar 

  29. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: 28th IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Boston, MA, USA (2015)

    Google Scholar 

Download references

Acknowledgement

The research was supported by National Natural Science Foundation of China (61671332), Basic Research Program of Shenzhen City (JCYJ20170306171431656) and Hubei Province Technological Innovation Major Projects (2017AAA123, 2016AAA015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, L., Wang, Z., Wang, S., Luo, Y. (2018). Coarse-to-Fine Image Super-Resolution Using Convolutional Neural Networks. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10705. Springer, Cham. https://doi.org/10.1007/978-3-319-73600-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73600-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73599-3

  • Online ISBN: 978-3-319-73600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics