Abstract
Remote sensing image fusion (or pan-sharpening) aims at generating high resolution multi-spectral (MS) image from inputs of a high spatial resolution single band panchromatic (PAN) image and a low spatial resolution multi-spectral image. In this paper, a deep convolutional neural network with two-stream inputs respectively for PAN and MS images is proposed for remote sensing image pan-sharpening. Firstly the network extracts features from PAN and MS images, then it fuses them to form compact feature maps that can represent both spatial and spectral information of PAN and MS images, simultaneously. Finally, the desired high spatial resolution MS image is recovered from the fused features using an encoding-decoding scheme. Experiments on Quickbird satellite images demonstrate that the proposed method can fuse the PAN and MS image effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
w and h are the width and height of the input images.
- 2.
References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
Alparone, L., Baronti, S., Garzelli, A., Nencini, F.: A global quality measurement of pan-sharpened multispectral imagery. GRSL 1(4), 313–317 (2004)
Aly, H.A., Sharma, G.: A regularized model-based optimization framework for pan-sharpening. TIP 23(6), 2596–2608 (2014)
Chavez, P., Sides, S.C., Anderson, J.A., et al.: Comparison of three different methods to merge multiresolution and multispectral data - landsat TM and SPOT panchromatic. PE&RS 57(3), 295–303 (1991)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. TPAMI 38(2), 295–307 (2016)
González-AudĂcana, M., Saleta, J.L., Catalán, R.G., GarcĂa, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. TGRS 42(6), 1291–1299 (2004)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
He, X., Condat, L., Bioucas-Dias, J.M., Chanussot, J., Xia, J.: A new pansharpening method based on spatial and spectral sparsity priors. TIP 23(9), 4160–4174 (2014)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654 (2016)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Laben, C.A., Brower, B.V.: Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent 6,011,875, 4 January 2000
Li, S., Yang, B.: A new pan-sharpening method using a compressed sensing technique. TGRS 49(2), 738–746 (2011)
Liu, Q., Wang, Y., Zhang, Z.: Pan-sharpening based on geometric clustered neighbor embedding. OE 53(9), 093109 (2014)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML, vol. 30 (2013)
Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G.: Pansharpening by convolutional neural networks. Remote Sens. 8(7), 594 (2016)
Nunez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. TGRS 37(3), 1204–1211 (1999)
Otazu, X., González-AudĂcana, M., Fors, O., Núñez, J.: Introduction of sensor spectral response into image fusion methods. Application to wavelet-based methods. TGRS 43(10), 2376–2385 (2005)
Pradhan, P.S., King, R.L., Younan, N.H., Holcomb, D.W.: Estimation of the number of decomposition levels for a wavelet-based multiresolution multisensor image fusion. TGRS 44(12), 3674–3686 (2006)
Prashanth, H., Shashidhara, H., Balasubramanya Murthy, K.N.: Image scaling comparison using universal image quality index. In: IAC3T, pp. 859–863. IEEE (2009)
Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., Wittman, T.: An adaptive IHS pan-sharpening method. GRSL 7(4), 746–750 (2010)
Ranchin, T., Wald, L.: Fusion of high spatial and spectral resolution images: the arsis concept and its implementation. PE&RS 66(1), 49–61 (2000)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99 (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shah, V.P., Younan, N.H., King, R.L.: An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. TGRS 46(5), 1323–1335 (2008)
Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. TGRS 46(5), 1301–1312 (2008)
Tu, T.M., Su, S.C., Shyu, H.C., Huang, P.S.: A new look at IHS-like image fusion methods. Inf. Fusion 2(3), 177–186 (2001)
Vivone, G., Alparone, L., Chanussot, J., Dalla Mura, M., Garzelli, A., Licciardi, G.A., Restaino, R., Wald, L.: A critical comparison among pansharpening algorithms. TGRS 53(5), 2565–2586 (2015)
Wald, L.: Quality of high resolution synthesised images: is there a simple criterion? In: Proceedings of Fusion of Earth Data: Merging Point Measurements, Raster Maps, and Remotely Sensed image (2000)
Wald, L., Ranchin, T., Mangolini, M.: Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. PE&RS 63, 691–699 (1997)
Wei, Q., Dobigeon, N., Tourneret, J.Y.: Bayesian fusion of multi-band images. J-STSP 9(6), 1117–1127 (2015)
Yuhas, R.H., Goetz, A.F.H., Boardman, J.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In: Proceedings of Summaries 3rd Annual JPL Airborne Geoscience Workshop, pp. 147–149, June 1992
Zhang, Q., Wang, Y., Liu, Q., Liu, X., Wang, W.: CNN based suburban building detection using monocular high resolution Google earth images. In: IGARSS, pp. 661–664. IEEE (2016)
Zhong, J., Yang, B., Huang, G., Zhong, F., Chen, Z.: Remote sensing image fusion with convolutional neural network. Sens. Imaging 17(1), 10 (2016)
Zhu, X.X., Bamler, R.: A sparse image fusion algorithm with application to pan-sharpening. TGRS 51(5), 2827–2836 (2013)
Acknowledgments
This work is supported by the Natural Science Foundation of China (NSFC) under Grant No. 61601011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Liu, X., Wang, Y., Liu, Q. (2018). Remote Sensing Image Fusion Based on Two-Stream Fusion Network. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-73603-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73602-0
Online ISBN: 978-3-319-73603-7
eBook Packages: Computer ScienceComputer Science (R0)