Abstract
Although RGBD cameras can provide depth information in real scenes, the captured depth map is often of low resolution and insufficient quality compared to the color image. Typically, most of the existing methods work by assuming that the edges in depth map and its corresponding color image are more likely to occur simultaneously. However, when the color image is rich in detail, the high-frequency information which is non-existent in the depth map will be introduced into the depth map. In this paper, we propose a CNN-based method to detect the co-occurrent structural edge for color-guided depth map super-resolution. Firstly, we design an edge detection convolutional neural network (CNN) to obtain the co-occurrent structural edge in depth map and its corresponding color image. Then we pack the obtained co-occurrent structural edges and the interpolated low-resolution depth maps into another customized CNN for depth map super-resolution. The presented scheme can effectively interpret and exploit the structural correlation between the depth map and the color image. Additionally, recursive learning is adopted to reduce the parameters of the customized CNN for depth map super-resolution and avoid overfitting. Experimental results demonstrate the effectiveness and reliability of our proposed approach by comparing with the state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1
Park, J., Kim, H., Tai, Y.W., Brown, M.S., Kweon, I.: High quality depth map upsampling for 3D-TOF cameras. In: IEEE International Conference on Computer Vision, pp. 1623–1630. IEEE (2011)
Zhang, J., Cao, Y., Zha, Z.J., Zheng, Z., Chen, C.W., Wang, Z.: A unified scheme for super-resolution and depth estimation from asymmetric stereoscopic video. IEEE Trans. Circuits Syst. Video Technol. 26(3), 479–493 (2016)
Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. In: IEEE International Conference on Computer Vision (ICCV), December 2013
Zhu, J., Zhang, J., Cao, Y., Wang, Z.: Image guided depth enhancement via deep fusion and local linear regularization. In: IEEE International Conference on Image Processing (ICIP) (2017)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)
Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. PP(99), 1 (2017)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)
Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep network architecture for single-image rain removal. IEEE Trans. Image Process. 26(6), 2944–2956 (2017)
Riegler, G., Ferstl, D., Rüther, M., Horst, B.: A deep primal-dual network for guided depth super-resolution. In: British Machine Vision Conference (2016)
Li, Y., Huang, J.B., Narendra, A., Yang, M.H.: Deep joint image filtering. In: European Conference on Computer Vision (2016)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Yang, J., Price, B., Cohen, S., Lee, H., Yang, M.H.: Object contour detection with a fully convolutional encoder-decoder network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Mao, X., Shen, C., Yang, Y.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Proceedings of Advances in Neural Information Processing Systems (2016)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Li, F.F.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44
Scharstein, D., Pal, C.: Learning conditional random fields for stereo. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)
Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans. Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)
Acknowledgments
This work is supported by the Natural Science Foundation of China (61472380, 61622211, 61472392).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Zhu, J., Zhai, W., Cao, Y., Zha, ZJ. (2018). Co-occurrent Structural Edge Detection for Color-Guided Depth Map Super-Resolution. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-73603-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73602-0
Online ISBN: 978-3-319-73603-7
eBook Packages: Computer ScienceComputer Science (R0)