Abstract
We consider the problem of classifying business process instances based on structural features derived from event logs. The main motivation is to provide machine learning based techniques with quick response times for interactive computer assisted root cause analysis. In particular, we create structural features from process mining such as activity and transition occurrence counts, and ordering of activities to be evaluated as potential features for classification. We show that adding such structural features increases the amount of information thus potentially increasing classification accuracy. However, there is an inherent trade-off as using too many features leads to too long run-times for machine learning classification models. One way to improve the machine learning algorithms’ run-time is to only select a small number of features by a feature selection algorithm. However, the run-time required by the feature selection algorithm must also be taken into account. Also, the classification accuracy should not suffer too much from the feature selection. The main contributions of this paper are as follows: First, we propose and compare six different feature selection algorithms by means of an experimental setup comparing their classification accuracy and achievable response times. Second, we discuss the potential use of feature selection results for computer assisted root cause analysis as well as the properties of different types of structural features in the context of feature selection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? SIGKDD Explor. 2(2), 1–13 (2000)
Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_12
Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013, Singapore, 16–19 April 2013, pp. 111–118. IEEE (2013)
Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)
Covões, T.F., Hruschka, E.R., de Castro, L.N., Santos, Á.M.: A cluster-based feature selection approach. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 169–176. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_20
Ding, C.H.Q., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(2), 185–206 (2005)
Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. CoRR, abs/1506.01428 (2015)
Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 83(2), 83–90 (2006)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)
Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Royal Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)
Hinkka, M.: Support materials for articles (2017). https://github.com/mhinkka/articles. Accessed 13 Mar 2017
Hinkka, M., Lehto, T., Heljanko, K.: Assessing big data SQL frameworks for analyzing event logs. In: 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2016, Heraklion, Crete, Greece, 17–19 February 2016, pp. 101–108. IEEE Computer Society (2016)
Lehto, T., Hinkka, M., Hollmén, J.: Focusing business improvements using process mining based influence analysis. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 177–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_11
Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21
Liaw, A., Wiener, M.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)
Meyer, P.E.: Information-theoretic variable selection and network inference from microarray data. Ph.D. thesis. Université Libre de Bruxelles (2008)
Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25
Ogutu, J.O., Piepho, H.-P., Schulz-Streeck, T.: A comparison of random forests, boosting and support vector machines for genomic selection. In: BMC Proceedings, vol. 5, no. 3, p. S11 (2011)
Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23
Thompson, K.: Programming techniques: regular expression search algorithm. Commun. ACM 11(6), 419–422 (1968)
Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)
van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)
Van Dongen, B.: Real-Life Event Logs - Hospital Log (2011). https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
Van Dongen, B.: BPI Challenge 2014. Rabobank Nederland (2014). http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35
Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T.A., Vapnik, V.: Feature selection for SVMs. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 668–674. MIT Press, Cambridge (2000)
Zeng, Y., Luo, J., Lin, S.: Classification using Markov blanket for feature selection. In: The 2009 IEEE International Conference on Granular Computing, GrC 2009, Lushan Mountain, Nanchang, China, 17–19 August 2009, pp. 743–747. IEEE Computer Society (2009)
Acknowledgements
We want to thank QPR Software Plc for funding our research. Financial support of Academy of Finland projects 139402 and 277522 is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Hinkka, M., Lehto, T., Heljanko, K., Jung, A. (2018). Structural Feature Selection for Event Logs. In: Teniente, E., Weidlich, M. (eds) Business Process Management Workshops. BPM 2017. Lecture Notes in Business Information Processing, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-319-74030-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-74030-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74029-4
Online ISBN: 978-3-319-74030-0
eBook Packages: Computer ScienceComputer Science (R0)