Skip to main content

Structural Feature Selection for Event Logs

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2017)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 308))

Included in the following conference series:

Abstract

We consider the problem of classifying business process instances based on structural features derived from event logs. The main motivation is to provide machine learning based techniques with quick response times for interactive computer assisted root cause analysis. In particular, we create structural features from process mining such as activity and transition occurrence counts, and ordering of activities to be evaluated as potential features for classification. We show that adding such structural features increases the amount of information thus potentially increasing classification accuracy. However, there is an inherent trade-off as using too many features leads to too long run-times for machine learning classification models. One way to improve the machine learning algorithms’ run-time is to only select a small number of features by a feature selection algorithm. However, the run-time required by the feature selection algorithm must also be taken into account. Also, the classification accuracy should not suffer too much from the feature selection. The main contributions of this paper are as follows: First, we propose and compare six different feature selection algorithms by means of an experimental setup comparing their classification accuracy and achievable response times. Second, we discuss the potential use of feature selection results for computer assisted root cause analysis as well as the properties of different types of structural features in the context of feature selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? SIGKDD Explor. 2(2), 1–13 (2000)

    Article  Google Scholar 

  2. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_12

    Chapter  Google Scholar 

  3. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Discovering signature patterns from event logs. In: IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2013, Singapore, 16–19 April 2013, pp. 111–118. IEEE (2013)

    Google Scholar 

  4. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. Decis. Support Syst. 69, 1–19 (2015)

    Article  Google Scholar 

  5. Covões, T.F., Hruschka, E.R., de Castro, L.N., Santos, Á.M.: A cluster-based feature selection approach. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 169–176. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02319-4_20

    Chapter  Google Scholar 

  6. Ding, C.H.Q., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(2), 185–206 (2005)

    Article  Google Scholar 

  7. Francescomarino, C.D., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-based predictive process monitoring. CoRR, abs/1506.01428 (2015)

    Google Scholar 

  8. Granitto, P.M., Furlanello, C., Biasioli, F., Gasperi, F.: Recursive feature elimination with random forest for PTR-MS analysis of agroindustrial products. Chemom. Intell. Lab. Syst. 83(2), 83–90 (2006)

    Article  Google Scholar 

  9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)

    MATH  Google Scholar 

  10. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm. J. Royal Stat. Soc. Ser. C (Applied Statistics) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  11. Hinkka, M.: Support materials for articles (2017). https://github.com/mhinkka/articles. Accessed 13 Mar 2017

  12. Hinkka, M., Lehto, T., Heljanko, K.: Assessing big data SQL frameworks for analyzing event logs. In: 24th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2016, Heraklion, Crete, Greece, 17–19 February 2016, pp. 101–108. IEEE Computer Society (2016)

    Google Scholar 

  13. Lehto, T., Hinkka, M., Hollmén, J.: Focusing business improvements using process mining based influence analysis. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNBIP, vol. 260, pp. 177–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45468-9_11

    Chapter  Google Scholar 

  14. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.: Complex symbolic sequence encodings for predictive monitoring of business processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 297–313. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_21

    Chapter  Google Scholar 

  15. Liaw, A., Wiener, M.: Classification and regression by randomforest. R news 2(3), 18–22 (2002)

    Google Scholar 

  16. Meyer, P.E.: Information-theoretic variable selection and network inference from microarray data. Ph.D. thesis. Université Libre de Bruxelles (2008)

    Google Scholar 

  17. Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45563-0_25

    Google Scholar 

  18. Ogutu, J.O., Piepho, H.-P., Schulz-Streeck, T.: A comparison of random forests, boosting and support vector machines for genomic selection. In: BMC Proceedings, vol. 5, no. 3, p. S11 (2011)

    Google Scholar 

  19. Teinemaa, I., Dumas, M., Maggi, F.M., Di Francescomarino, C.: Predictive business process monitoring with structured and unstructured data. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 401–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4_23

    Chapter  Google Scholar 

  20. Thompson, K.: Programming techniques: regular expression search algorithm. Commun. ACM 11(6), 419–422 (1968)

    Article  MATH  Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  22. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin (2011)

    MATH  Google Scholar 

  23. Van Dongen, B.: Real-Life Event Logs - Hospital Log (2011). https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

  24. Van Dongen, B.: BPI Challenge 2014. Rabobank Nederland (2014). http://dx.doi.org/10.4121/uuid:c3e5d162-0cfd-4bb0-bd82-af5268819c35

  25. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T.A., Vapnik, V.: Feature selection for SVMs. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000, Denver, CO, USA, pp. 668–674. MIT Press, Cambridge (2000)

    Google Scholar 

  26. Zeng, Y., Luo, J., Lin, S.: Classification using Markov blanket for feature selection. In: The 2009 IEEE International Conference on Granular Computing, GrC 2009, Lushan Mountain, Nanchang, China, 17–19 August 2009, pp. 743–747. IEEE Computer Society (2009)

    Google Scholar 

Download references

Acknowledgements

We want to thank QPR Software Plc for funding our research. Financial support of Academy of Finland projects 139402 and 277522 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Hinkka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hinkka, M., Lehto, T., Heljanko, K., Jung, A. (2018). Structural Feature Selection for Event Logs. In: Teniente, E., Weidlich, M. (eds) Business Process Management Workshops. BPM 2017. Lecture Notes in Business Information Processing, vol 308. Springer, Cham. https://doi.org/10.1007/978-3-319-74030-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74030-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74029-4

  • Online ISBN: 978-3-319-74030-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics