
Enhancing workflow-nets with data for trace completion

Riccardo De Masellis1, Chiara Di Francescomarino1,
Chiara Ghidini1, and Sergio Tessaris2

1 FBK-IRST, Italy {r.demasellis,dfmchiara,ghidini}@fbk.eu
2 Free University of Bozen-Bolzano, Italy tessaris@inf.unibz.it

Abstract. The growing adoption of IT-systems for modeling and executing (busi-
ness) processes or services has thrust the scientific investigation towards tech-
niques and tools which support more complex forms of process analysis. Many
of them, such as conformance checking, process alignment, mining and enhance-
ment, rely on complete observation of past (tracked and logged) executions. In
many real cases, however, the lack of human or IT-support on all the steps of pro-
cess execution, as well as information hiding and abstraction of model and data,
result in incomplete log information of both data and activities. This paper tackles
the issue of automatically repairing traces with missing information by notably
considering not only activities but also data manipulated by them. Our technique
recasts such a problem in a reachability problem and provides an encoding in
an action language which allows to virtually use any state-of-the-art planning to
return solutions.

1 Introduction

The use of IT systems for supporting business activities has brought to a large diffusion of
process mining techniques and tools that offer business analysts the possibility to observe
the current process execution, identify deviations from themodel, perform individual and
aggregated analysis on current and past executions.

event log modeldiscovery

diagnosticsconformance
checking

new modelenhancement

(a)

event log

model
(b)

event log

model
(c)

Fig. 1: The three types of process mining.

According to the process mining mani-
festo, all these techniques and tools can be
grouped in three basic types: process dis-
covery, conformance checking and pro-
cess enhancement (see Figure 1), and re-
quire in input an event log and, for con-
formance checking and enhancement, a
(process) model. A log, usually described
in the IEEE standard XES format3, is a
set of execution traces (or cases) each of
which is an ordered sequence of events carrying a payload as a set of attribute-value
pairs. Process models instead provide a description of the scenario at hand and can be
constructed using one of the available Business Process Modeling Languages, such as
BPMN, YAWL and Declare.

3 http://www.xes-standard.org/

ar
X

iv
:1

70
6.

00
35

6v
1

 [
cs

.A
I]

 1
 J

un
 2

01
7

http://www.xes-standard.org/

Event logs are therefore a crucial ingredient to the accomplishment of process
mining. Unfortunately, a number of difficulties may hamper the availability of event logs.
Among these are partial event logs, where the execution traces may bring only partial
information in terms of which process activities have been executed and what data or
artefacts they produced. Thus repairing incomplete execution traces by reconstructing
the missing entries becomes an important task to enable process mining in full, as
noted in recent works such as [17,8]. While these works deserve a praise for having
motivated the importance of trace repair and having provided some basic techniques for
reconstructing missing entries using the knowledge captured in process models, they
all focus on event logs (and process models) of limited expressiveness. In fact, they
all provide techniques for the reconstruction of control flows, thus completely ignoring
the data flow component. This is a serious limitation, given the growing practical and
theoretical efforts to extend business process languages with the capability to model
complex data objects, along with the traditional control flow perspective [6].

In this paper we show how to exploit state-of-the-art planning techniques to deal
with the repair of data-aware event logs in the presence of imperative process models.
Specifically we will focus on the well established Workflow Nets [20], a particular
class of Petri nets that provides the formal foundations of several process models, of
the YAWL language and have become one of the standard ways to model and analyze
workflows. In particular we provide:
1. a modeling language DAW-net, an extension of the workflow nets with data for-

malism introduced in [18] so to be able to deal with even more expressive data
(Section 3);

2. a recast of data aware trace repair as a reachability problem in DAW-net (Section C);
3. a sound and complete encoding of reachability in DAW-net in a planning problem

so to be able to deal with trace repair using planning (Section 5).
The solution of the problem are all and only the repairs of the partial trace compliant
with the DAW-net model. The advantage of using automated planning techniques is that
we can exploit the underlying logic language to ensure that generated plans conform
to the observed traces without resorting to ad hoc algorithms for the specific repair
problem. The theoretical investigation presented in this work provides an important step
forward towards the exploitation of mature planning techniques for the trace repair w.r.t.
data-aware processes.

2 Preliminaries

2.1 The Workflow Nets modeling language
Petri Nets (PN) is a modeling language for the description of distributed systems that
has widely been applied to the description and analysis of business processes [1].The
classical PN is a directed bipartite graph with two node types, called places and transi-
tions, connected via directed arcs. Connections between two nodes of the same type are
not allowed.
Definition 1 (Petri Net). A Petri Net is a triple 〈P, T, F 〉 where P is a set of places; T
is a set of transitions; F ⊆ (P × T) ∪ (T × P) is the flow relation describing the arcs
between places and transitions (and between transitions and places).

The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}. The
postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of pre-
and postsets of places are analogous.

p0

p1 p2t

Fig. 2: A Petri Net.

Places in a PN may contain a discrete number of
marks called tokens. Any distribution of tokens over
the places, formally represented by a totalmappingM :
P 7→ N, represents a configuration of the net called a
marking. PNs come with a graphical notation where
places are represented by means of circles, transitions
by means of rectangles and tokens by means of full
dots within places. Figure 2 depicts a PN with a marking M(p0) = 2, M(p1) = 0,
M(p2) = 1. The preset and postset of t are {p0, p1} and {p2}, respectively.

start T1:ask
application
documents

p1

T2:send
student

application

T3:send
worker

application

p2

p3

T4:fill
student
request

T5:fill
worker
request

p4

T6:local credit
officer approval

T7:senior credit
officer approval

T8:bank credit
committee
approval

p5
T9

p6

p7

T10:send
approval to
customer

T11:store
approval
in branch

p8

p9

T12:
issue
loan

end
loanType=s

loanType=w

request≤ 5k

request≥ 100k

else

Fig. 3: A process as a Petri Net.

Process tasks are modeled in PNs as transitions while arcs and places constraint their
ordering. For instance, the process in Figure 34 exemplifies how PNs can be used to
model parallel and mutually exclusive choices, typical of business processes: sequences
T2;T4-T3;T5 and transitions T6-T7-T8 are indeed placed on mutually exclusive paths.
Transitions T10 and T11 are instead placed on parallel paths. Finally, T9 is needed to
prevent connections between nodes of the same type.

The expressivity of PNs exceeds, in the general case, what is needed to model
business processes, which typically have a well-defined starting point and a well-defined
ending point. This imposes syntactic restrictions on PNs, that result in the following
definition of a workflow net (WF-net) [1].

Definition 2 (WF-net). A PN 〈P, T, F 〉 is a WF-net if it has a single source place start,
a single sink place end, and every place and every transition is on a path from start
to end, i.e., for all n ∈ P ∪ T , (start, n) ∈ F ∗ and (n, end) ∈ F ∗, where F ∗ is the
reflexive transitive closure of F .

Amarking in a WF-net represents the workflow state of a single case. The semantics
of a PN/WF-net, and in particular the notion of valid firing, defines how transitions route
tokens through the net so that they correspond to a process execution.

Definition 3 (Valid Firing). A firing of a transition t ∈ T from M to M ′ is valid, in
symbolsM t→M ′, iff

4 For the sake of simplicity we only focus here on the, so-called, happy path, that is the successful
granting of the loan.

1. t is enabled inM , i.e., {p ∈ P |M(p) > 0} ⊇ •t; and
2. the markingM ′ is such that for every p ∈ P :

M ′(p) =


M(p)− 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t

M(p) otherwise

Condition 1. states that a transition is enabled if all its input places contain at least one
token; 2. states that when t fires it consumes one token from each of its input places and
produces one token in each of its output places.

A case of aWF-Net is a sequence of valid firingsM0
t1→M1,M1

t2→M2, . . . ,Mk−1
tk→

Mk whereM0 is the marking indicating that there is a single token in start.

Definition 4 (k-safeness). A marking of a PN is k-safe if the number of tokens in all
places is at most k. A PN is k-safe if the initial marking is k-safe and the marking of all
cases is k-safe.

From now on we concentrate on 1-safe nets, which generalize the class of structured
workflows and are the basis for best practices in process modeling [11]. We also use
safeness as a synonym of 1-safeness. It is important to notice that our approach can be
seamlessly generalized to other classes of PNs, as long as it is guaranteed that they are
k-safe. This reflects the fact that the process control-flow is well-defined (see [10]).

Reachability on Petri Nets. The behavior of a PN can be described as a transition
system where states are markings and directed edges represent firings. Intuitively, there
is an edge from Mi to Mi+1 labeled by ti if Mi

t→ Mi+1 is a valid firing. Given a
“goal” markingMg , the reachability problem amounts to check if there is a path from the
initial markingM0 toMg . Reachability on PNs (WF-nets) is of enormous importance
in process verification as it allows for checking natural behavioral properties, such as
satisfiability and soundness in a natural manner [2].

2.2 Trace repair

One of the goals of process mining is to capture the as-is processes as accurately as
possible: this is done by examining event logs that can be then exploited to perform
the tasks in Figure 1. In many cases, however, event logs are subject to data quality
problems, resulting in incorrect or missing events in the log. In this paper we focus
on the latter issue addressing the problem of repairing execution traces that contain
missing entries (hereafter shortened in trace repair).

The need for trace repair is motivated in depth in [17], where missing entities are
described as a frequent cause of low data quality in event logs, especially when the
definition of the business processes integrates activities that are not supported by IT
systems due either to their nature (e.g. they consist of human interactions) or to the high
level of abstraction of the description, detached from the implementation. A further
cause of missing events are special activities (such as transition T9 in Figure 3) that
are introduced in the model to guarantee properties concerning e.g., the structure of the
workflow or syntactic constraints, but are never executed in practice.

The starting point of trace repair are execution traces and the knowledge captured in
process models. Consider for instance the model in Figure 3 and the (partial) execution
trace {T3, T7}. By aligning the trace to the model using a replay-based approach or a
planning based approach, the techniques presented in [17] and [8] are able to exploit the
events stored in the trace and the control flow specified in the model to reconstruct two
possible repairs:

{T1, T3, T5, T7, T9, T10, T11, T12}
{T1, T3, T5, T7, T9, T11, T10, T12}

Consider now a different scenario in which the partial trace reduces to {T7}. In this
case, by using the control flow in Figure 3 we are not able to reconstruct whether the
loan is a student loan or a worker loan. This increases the number of possible repairs and
therefore lowers the usefulness of trace repair. Assume nonetheless that the event log
conforms to the XES standard and stores some observed data attached to T7 (enclosed
in square brackets):

{T7[request = 60k, loan = 50k]}
If the process model is able to specify how transitions can read and write variables,
and furthermore some constraints on how they do it, the scenario changes completely.
Indeed, assume that transition T4 is empowered with the ability to write the variable
request with a value smaller or equal than 30k (being this the maximum amount of a
student loan). Using this fact, and the fact that the request examined by T7 is greater than
30k, we can understand that the execution trace has chosen the path of the worker loan.
Moreover, if the model specifies that variable loanType is written during the execution of
T1, when the applicant chooses the type of loan she is interested to, we are able to infer
that T1 sets variable loanType to w. This example, besides illustrating the idea of trace
repair, also motivates why data are important to accomplish this task, and therefore why
extending repair techniques beyond the mere control flow is a significant contribution
to address data quality problems in event logs.

2.3 The planning language K

The main elements of action languages are fluents and actions. The former represent the
state of the systemwhichmay change bymeans of actions. Causation statements describe
the possible evolution of the states, and preconditions associated to actions describe
which action can be executed according to the current state. A planning problem inK [9]
is specified using a Datalog-like language where fluents and actions are represented by
literals (not necessarily ground). The specification includes the list of fluents, actions,
initial state and goal conditions; also a set of statements specifies the dynamics of
the planning domain using causation rules and executability conditions. The semantics
of K borrows heavily from Answer Set Programming (ASP) paradigm. In fact, the
system enables the reasoning with partial knowledge and provides both weak and strong
negation.

A causation rule is a statement of the form
caused f if b1,. . ., bk, not bk+1, . . ., not b`

after a1,. . ., am, not am+1, . . ., not an.

The rule states that f is true in the new state reached by executing (simultaneously)
some actions, provided that a1, . . . , am are known to hold while am+1, . . . , an are not
known to hold in the previous state (some of the aj might be actions executed on it),
and b1, . . . , bk are known to hold while bk+1, . . . , b` are not known to hold in the new
state. Rules without the after part are called static.

An executability condition is a statement of the form
executable a if b1,. . ., bk, not bk+1, . . ., not b`.

Informally, such a condition says that the action a is eligible for execution in a state, if
b1, . . . , bk are known to hold while bk+1, . . . , b` are not known to hold in that state.

Terms in both kind of statements could include variables (starting with capital letter)
and the statements must be safe in the usual Datalog meaning w.r.t. the first fluent or
action of the statements.

A planning domain PD is a tuple 〈D,R〉 where D is a finite set of action and
fluent declarations and R a finite set of rules, initial state constraints, and executability
conditions.

The semantics of the language is provided in terms of a transition system where
the states are ASP models (sets of atoms) and actions transform the state according
to the rules. A state transition is a tuple t = 〈s,A, s′〉 where s, s′ are states and
A is a set of action instances. The transition is said to be legal if the actions are
executable in the first state and both states are the minimal ones that satisfy all causation
rules. Semantics of plans including default negation is defined by means of a Gelfond-
Lifschitz type reduction to a positive planning domain. A sequence of state transitions
〈s0, A1, s1〉, . . . , 〈sn−1, An, sn〉, n ≥ 0, is a trajectory for PD, if s0 is a legal initial
state of PD and all 〈si−1, Ai, si〉, are legal state transitions of PD.

A planning problem is a pair of planning domain PD and a ground goal
g1, . . . , gm, not gm+1, . . ., not gn that is required to be satisfied at the end of the exe-
cution.

3 Framework

In this section we suitably extend WF-nets to represent data and their evolution as
transitions are performed. In order for such an extension to be meaningful, i.e., allowing
reasoning on data, it has to provide: (i) a model for representing data; (ii) a way to make
decisions on actual data values; and (iii) a mechanism to express modifications to data.
Therefore, we enhance WF-nets with the following elements:
– a set of variables taking values from possibly different domains (addressing (i));
– queries on such variables used as transitions preconditions (addressing (ii))
– variables updates and deletion in the specification of net transitions (addressing
(iii)).

Our framework follows the approach of state-of-the-art WF-nets with data [18,12], from
which it borrows the above concepts, extending them by allowing reasoning on actual
data values as better explained in Section 6.

Throughout the section we use the WF-net in Figure 3 extended with data as a
running example.

3.1 Data Model

As our focus is on trace repair, we follow the data model of the IEEE XES standard
for describing logs, which represents data as a set of variables. Variables take values
from specific sets on which a partial order can be defined. As customary, we distinguish
between the data model, namely the intensional level, from a specific instance of data,
i.e., the extensional level.

Definition 5 (Data model). A data model is a tuple D = (V, ∆, dm, ord) where:
– V is a possibly infinite set of variables;
– ∆ = {∆1, ∆2, . . .} is a possibly infinite set of domains (not necessarily disjoint);
– dm : V → ∆ is a total and surjective function which associates to each variable v
its domain ∆i;

– ord is a partial function that, given a domain∆i, if ord(∆i) is defined, then it returns
a partial order (reflexive, antisymmetric and transitive) ≤∆i⊆ ∆i ×∆i.

Adatamodel for the loan example isV = {loanType, request, loan},dm(loanType) =
{w, s}, dm(request) = N, dm(loan) = N, with dm(loan) and dm(loanType) being
total ordered by the natural ordering ≤ in N.

An actual instance of a data model is simply a partial function associating values to
variables.

Definition 6 (Assignment). Let D = 〈V, ∆, dm, ord〉 be a data model. An assignment
for variables in V is a partial function η : V →

⋃
i∆i such that for each v ∈ V , if η(v)

is defined, i.e., v ∈ img(η) where img is the image of η, then we have η(v) ∈ dm(v).

We now define our boolean query language, which notably allows for equality and
comparison. As will become clearer in Section B.2, queries are used as guards, i.e.,
preconditions for the execution of transitions.

Definition 7 (Query language - syntax). Given a data model, the language L(D) is
the set of formulas Φ inductively defined according to the following grammar:

Φ := true | def(v) | t1 = t2 | t1 ≤ t2 | ¬Φ1 | Φ1 ∧ Φ2

where v ∈ V and t1, t2 ∈ V ∪
⋃
i∆i.

Examples of queries of the loan scenarios are request ≤ 5k or loanType = w.
Given a formula Φ and an assignment η, we write Φ[η] for the formula Φ where each
occurrence of variable v ∈ img(η) is replaced by η(v).

Definition 8 (Query language - semantics). Given a data model D, an assignment η
and a query Φ ∈ L(D) we say thatD, η satisfies Φ, writtenD, η |= Φ inductively on the
structure of Φ as follows:
– D, η |= true;
– D, η |= def(v) iff v ∈ img(η);
– D, η |= t1 = t2 iff t1[η], t2[η] 6∈ V and t1[η] ≡ t2[η];
– D, η |= t1 ≤ t2 iff t1[η], t2[η] ∈ ∆i for some i and ord(∆i) is defined and
t1[η] ≤∆i t2[η];

– D, η |= ¬Φ iff it is not the case that D, η |= Φ;
– D, η |= Φ1 ∧ Φ2 iff D, η |= Φ1 and D, η |= Φ2.

Intuitively, def can be used to check if a variable has an associated value or not
(recall that assignment η is a partial function); equality has the intended meaning and
t1 ≤ t2 evaluates to true iff t1 and t2 are values belonging to the same domain ∆i,
such a domain is ordered by a partial order ≤∆i and t1 is actually less or equal than t2
according to ≤∆i .

3.2 Data-aware net
We now combine the data model with a WF-net and formally define how transitions
are guarded by queries and how they update/delete data. The result is a Data-AWare net
(DAW-net) that incorporates aspects (i)–(iii) described at the beginning of Section 3.

Definition 9 (DAW-net). A DAW-net is a tuple 〈D, N , wr, gd〉 where:
– N = 〈P, T, F 〉 is a WF-net;
– D = 〈V, ∆, dm, ord〉 is a data model;
– wr : T 7→ (V ′ 7→ 2dm(V)), where V ′ ⊆ V , dm(V) =

⋃
v∈V dm(v) and wr(t)(v) ⊆

dm(v) for each v ∈ V ′, is a function that associates each transition to a (partial)
function mapping variables to a finite subset of their domain.

– gd : T 7→ L(D) is a function that associates a guard to each transition.

Function gd associates a guard, namely a query, to each transition. The intuitive
semantics is that a transition t can fire if its guard gd(t) evaluates to true (given the
current assignment of values to data). Examples are gd(T6) = request ≤ 5k and
gd(T8) = ¬(request ≤ 99999). Function wr is instead used to express how a transition
t modifies data: after the firing of t, each variable v ∈ V ′ can take any value among a
specific finite subset of dm(v). We have three different cases:
– ∅ ⊂ wr(t)(v) ⊆ dm(v): t nondeterministically assigns a value from wr(t)(v) to v;
– wr(t)(v) = ∅: t deletes the value of v (hence making v undefined);
– v 6∈ dom(wr(t)): value of v is not modified by t.

Notice that by allowing wr(t)(v) ⊆ dm(v) in the first bullet above we enable the
specification of restrictions for specific tasks. E.g., wr(T4) : {request} 7→ {0 . . . 30k}
says that T4 writes the request variable and intuitively that students can request a
maximum loan of 30k, while wr(T5) : {request} 7→ {0 . . . 500k} says that workers
can request up to 500k.

The intuitive semantics of gd and wr is formalized next. We start from the definition
of DAW-net state, which includes both the state of the WF-net, namely its marking, and
the state of data, namely the assignment. We then extend the notions of state transition
and valid firing.

Definition 10 (DAW-net state). A state of a DAW-net 〈D,N ,wr, gd〉 is a pair (M,η)
whereM is a marking for 〈P, T, F 〉 and η is an assignment for D.
Definition 11 (DAW-net Valid Firing). Given a DAW-net 〈D,N ,wr, gd〉, a firing of a
transition t ∈ T is a valid firing from (M,η) to (M ′, η′), written as (M,η)

t→ (M ′, η′),
iff conditions 1. and 2. of Def. 3 holds for M and M ′, i.e., it is a WF-Net valid firing,
and

1. D, η |= gd(t),
2. assignment η′ is such that, if wr = {v | wr(t)(v) 6= ∅}, del = {v | wr(t)(v) = ∅}:

– its domain dom(η′) = dom(η) ∪ wr \ del;
– for each v ∈ dom(η′):

η′(v) =

{
d ∈ wr(t)(v) if v ∈ wr
η(v) otherwise.

Condition 1. and 2. extend the notion of valid firing of WF-nets imposing additional
pre- and postconditions on data, i.e., preconditions on η and postconditions on η′.
Specifically, 1. says that for a transition t to be fired its guard gd(t) must be satisfied by
the current assignment η. Condition 2. constrains the new state of data: the domain of η′
is defined as the union of the domain of η with variables that are written (wr), minus the
set of variables that must be deleted (del). Variables in dom(η′) can indeed be grouped
in three sets depending on the effects of t: (i) old = dom(η) \ wr: variables whose
value is unchanged after t; (ii) new = wr \ dom(η): variables that were undefined but
have a value after t; and (iii) overwr = wr ∩ dom(η): variables that did have a value
and are updated with a new one after t. The final part of condition 2. says that each
variable in new ∪ overwr takes a value in wr(t)(v), while variables in old maintain
the old value η(v).

A case of a DAW-net is defined as a case of a WF-net, with the only difference that
the assignment η0 of the initial state (M0, η0) is empty, i.e., dom(η0) = ∅.

4 Trace repair as reachability

In this section we provide the intuition behind our technique for solving the trace repair
problem via reachability. Full details and proofs are contained in Appendices A–D.

A trace is a sequence of observed events, each with a payload including the transition
it refers to and its effects on the data, i.e., the variables updated by its execution.
Intuitively, a DAW-net case is compliant w.r.t. a trace if it contains all the occurrences
of the transitions observed in the trace (with the corresponding variable updates) in the
right order.

As a first step, we assumewithout loss of generality that DAW-net models start with a
special transition startt and terminate with a special transition endt. Every process can
be reduced to such a structure as informally illustrated in the left hand side of Figure 4
by arrows labeled with (1). Note that this change would not modify the behavior of the
net: any sequence of firing valid for the original net can be extended by the firing of the
additional transitions and vice versa.

Next, we illustrate the main idea behind our approach by means of the right hand
side of Figure 4: we consider the observed events as transitions (in red) and we suitably
“inject” them in the original DAW-net. By doing so, we obtain a new model where,
intuitively, tokens are forced to activate the red transitions of DAW-net, when events are
observed in the trace. When, instead, there is no red counterpart, i.e., there is missing
information in the trace, the tokens move in the black part of the model. The objective
is then to perform reachability for the final marking (i.e., to have one token in the end

t

i_1

i_n

o_1

o_k
i_1

i_n

o_1

o_k

t

t_ee’ e”end
start

e_1 e_l

endold_
end

old_
start

(1)(1)
(2)

startt endt
start

starttstart
endendt

Fig. 4: Outline of the trace “injection”

place and all other places empty) over such a new model in order to obtain all and only
the possible repairs for the partial trace.

More precisely, for each event ewith a payload including transition t and some effect
on variables we introduce a new transition te in the model such that:
– te is placed in parallel with the original transition t;
– te includes an additional input place connected to the preceding event and an
additional output place which connects it to the next event;

– gd(te) = gd(t) and
– wr(te) specifies exactly the variables and the corresponding values updated by the
event, i.e. if the event set the value of v to d, then wr(te)(v) = {d}; if the event
deletes the variable v, then wr(te)(v) = ∅.
Given a trace τ and a DAW-netW , it is easy to see that the resulting trace workflow

(indicated asW τ) is a strict extension ofW (only new nodes are introduced) and, since
all newly introduced nodes are in a path connecting the start and sink places, it is a
DAW-net, whenever the original one is a DAW-net net.

We now prove the soundness and completeness of the approach by showing that:
(1) all cases ofW τ are compliant with τ ; (2) each case ofW τ is also a case ofW and
(3) if there is a case ofW compliant with τ , then that is also a case forW τ .

Property (1) is ensured by construction. For (2) and (3) we need to relate cases from
W τ to the original DAW-netW .We indeed introduce a projection functionΠτ that maps
elements from cases of the enriched DAW-net to cases of elements from the original
DAW-net. Essentially, Πτ maps newly introduced transitions te to the corresponding
transitions in event e, i.e., t, and also projects away the new places in the markings.
Given that the structure of W τ is essentially the same as that of W with additional
copies of transitions that are already inW , it is not surprising that any case forW τ can
be replayed onW by mapping the new transitions te into the original ones t, as shown
by the following:

Lemma 1. If C is a case ofW τ then Πτ (C) is a case ofW .

This lemma proves that whenever we find a case onW τ , then it is an example of a
case onW that is compliant with τ , i.e., (2). However, to reduce the original problem to
reachability on DAW-net, we need to prove that all the W cases compliant with τ can
be replayed onW τ , that is, (3). In order to do that, we can build a case forW τ starting
from the compliant case forW , by substituting the occurrences of firings corresponding
to events in τ with the newly introduced transitions. The above results pave the way to
the following:

Theorem 1. LetW be a DAW-net and τ = (e1, . . . , en) a trace; thenW τ characterises
all and only the cases ofW compatible with τ . That is
⇒ if C is a case ofW τ containing ten then Πτ (C) is compatible with τ ; and
⇐ ifC is a case ofW compatible with τ , then there is a caseC ′ ofW τ s.t.Πτ (C

′) = C.

Theorem 1 provides the main result of this section and is the basis for the reduction of
the trace repair forW and τ to the reachability problem forW τ . In fact, by enumerating
all the cases ofW τ reaching the final marking (i.e. a token in end) we can provide all
possible repairs for the partial observed trace. Moreover, the transformation generating
W τ is preserving the safeness properties of the original workflow:

Lemma 2. LetW be a DAW-net and τ a trace ofW . IfW is k-safe thenW τ is k-safe
as well.

This is essential to guarantee the decidability of the reasoning techniques described in
the next section.

5 Reachability as a planning problem

In this section we exploit the similarity between workflows and planning domains in
order to describe the evolution of a DAW-net by means of a planning language. Once
the original workflow behaviour has been encoded into an equivalent planning domain,
we can use the automatic derivation of plans with specific properties to solve the
reachability problem. In our approach we introduce a new action for each transition
(to ease the description we will use the same names) and represent the status of the
workflow – marking and variable assignments – by means of fluents. Although their
representation as dynamic rules is conceptually similar we will separate the description
of the encoding by considering first the behavioural part (the WF-net) and then the
encoding of data (variable assignments and guards).

5.1 Encoding DAW-net behaviour

Since we focus on 1-safe WF-nets the representation of markings is simplified by the
fact that each place can either contain 1 token or no tokens at all. This information can be
represented introducing a propositional fluent for each place, true iff the corresponding
place holds a token. Let us consider 〈P, T, F 〉 the safe WF-net component of a DAW-net
system. The declaration part of the planning domain will include:
– a fluent declaration p for each place p ∈ P ;
– an action declaration t for each task t ∈ T .

Since each transition can be fired5 only if each input place contains a token, then the
corresponding action can be executed when place fluents are true: for each task t ∈ T ,
given {it1, . . . , itn} = •t, we include the executability condition:

executable t if it1, . . . , itn.

5 Guards will be introduced in the next section.

As valid firings are sequential, namely only one transition can be fired at each step, we
disable concurrency in the planning domain introducing the following rule for each pair
of tasks t1, t2 ∈ T 6

caused false after t1, t2.
Transitions transfer tokens from input to output places. Thus the corresponding actions
must clear the input places and set the output places to true. This is enforced by including

caused −it1 after t. . . . caused −itn after t.
caused ot1 after t. . . . caused otk after t.

for each task t ∈ T and {it1, . . . , itn} = •t \ t•, {ot1, . . . , otk} = t•. Finally, place fluents
should be inertial since they preserve their value unless modified by an action. This is
enforced by adding for each p ∈ P

caused p if not −p after p.

Planning problem. Besides the domain described above, a planning problem includes
an initial state, and a goal. In the initial state the only place with a token is the source:

initially: start.
The formulation of the goal depends on the actual instance of the reachability problem
we need to solve. The goal corresponding to the state in which the only place with a
token is end is written as:

goal: end, not p1, . . ., not pk?
where {p1, . . . , pk} = P \ {end}.

5.2 Encoding data

For each variable v ∈ V we introduce a fluent unary predicate varv holding the value of
that variable. Clearly, varv predicates must be functional and have no positive instantia-
tion for undefined variables.

We also introduce auxiliary fluents to facilitate the writing of the rules. Fluent defv
indicates whether the v variable is not undefined – it is used both in tests and to enforce
models where the variable is assigned/unassigned. The fluent chngv is used to inhibit
inertia for the variable v when its value is updated because of the execution of an action.

DAW-net includes the specification of the set of values that each transition can
write on a variable. This information is static, therefore it is included in the background
knowledge by means of a set of unary predicates domv,t as a set of facts:

domv,t(e).
for each v ∈ V , t ∈ T , and e ∈ wr(t)(v).

Constraints on variables. For each variable v ∈ V:
– we impose functionality

caused false if varv(X), varv(Y), X != Y.
– we force its value to propagate to the next state unless it is modified by an action
(chngv)

6 For efficiency reasons we can relax this constraint by disabling concurrency only for transitions
sharing places or updating the same variables. This would provide shorter plans.

caused varv(X) if not −varv(X), not chngv
after varv(X).

– the defined fluent is the projection of the argument
caused defv if varv(X).

Variable updates. The value of a variable is updated by means of causation rules that
depend on the transition t that operates on the variable, and depends on the value of
wr(t). For each v in the domain of wr(t):

– wr(t)(v) = ∅: delete (undefine) a variable v
caused false if defv after t.
caused chngv after t.

– wr(t)(v) ⊆ dm(v): set v with a value nondeterministically chosen among a set of
elements from its domain

caused varv(V) if domv,t(V), not −varv(V) after t.
caused −varv(V) if domv,t(V), not varv(V) after t.
caused false if not defv after t.
caused chngv after t.

If wr(t)(v) contains a single element d, then the assignment is deterministic and the
first three rules above can be substituted with7

caused varv(d) after t.

Guards. To each subformula ϕ of transition guards is associated a fluent grdϕ that
is true when the corresponding formula is satisfied. To simplify the notation, for any
transition t, we will use grdt to indicate the fluent grdgd(t). Executability of transitions
is conditioned to the satisfiability of their guards; instead of modifying the executability
rule including the grdt among the preconditions, we use a constraint rule preventing
executions of the action whenever its guard is not satisfied:

caused false after t, not grdt.
Translation of atoms (ξ) is defined in terms of varv predicates. For instance ξ(v = w)

corresponds to varv(V), varw(W), V == W. That is ξ(v, T) = vart(T) for t ∈ V , and
ξ(d, T) = vartT == d for d ∈

⋃
i∆i. For each subformula ϕ of transition guards a static

rule is included to “define” the fluent grdϕ:
true : caused grdϕ if true .

def(v) : caused grdϕ if defv .
t1 = t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), T1 == T2 .
t1 ≤ t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), ord(T1,T2) .
¬ϕ1 : caused grdϕ if not grdϕ1

.
ϕ1 ∧ . . . ∧ ϕn : caused grdϕ if grdϕ1

, . . . , grdϕn .

5.3 Correctness and completeness

We provide a sketch of the correctness and completeness of the encoding. Proofs can be
found in [4].

7 The deterministic version is a specific case of the non-deterministic ones and equivalent in the
case that there is a single domv,t(d) fact.

Planning states include all the information to reconstruct the original DAW-net states.
In fact, we can define a function Φ(·) mapping consistent planning states into DAW-net
states as following: Φ(s) = (M,η) with

∀p ∈ P, M(p) =

{
1 if p ∈ s
0 otherwise

η = {(v, d) | varv(d) ∈ s}

Φ(s) is well defined because s it cannot be the case that {varv(d), varv(d′)} ⊆ s with
d 6= d′, otherwise the static rule

caused false if varv(X), varv(Y), X != Y.
would not be satisfied. Moreover, 1-safeness implies that we can restrict to markings
with range in {0, 1}. By looking at the static rules we can observe that those defining
the predicates defv and grdt are stratified. Therefore their truth assignment depends
only on the extension of varv(·) predicates. This implies that grdt fluents are satisfied
iff the variables assignment satisfies the corresponding guard gd(t). Based on these
observations, the correctness of the encoding is relatively straightforward since we need
to show that a legal transition in the planning domain can be mapped to a valid firing.
This is proved by inspecting the dynamic rules.

Lemma 3 (Correctness). Let W be a DAW-net and Ω(W) the corresponding plan-
ning problem. If 〈s, {t}, s′〉 is a legal transition in Ω(W), then Φ(s) t→ Φ(s′) is a
valid firing ofW .

The proof of completeness is more complex because – given a valid firing – we
need to build a new planning state and show that it is minimal w.r.t. the transition. Since
the starting state s of 〈s, {t}, s′〉 does not require minimality we just need to show its
existence, while s′ must be carefully defined on the basis of the rules in the planning
domain.

Lemma 4 (Completeness). LetW be a DAW-net, Ω(W) the corresponding planning
problem and (M,η)

t→ (M ′, η′) be a valid firing ofW . Then for each consistent state
s s.t. Φ(s) = M there is a consistent state s′ s.t. Φ(s′) = M ′ and 〈s, {t}, s′〉 is a legal
transition in Ω(W).

Lemmata 13 and 12 provide the basis for the inductive proof of the following
theorem:

Theorem 2. LetW be a safeWF-net andΩ(PN) the corresponding planning problem.
Let (M0, η0) be the initial state of W – i.e. with a single token in the source and no
assignments – and s0 the planning state satisfying the initial condition.

(⇒) For any case inW

ζ : (M0, η0)
t1→ (M1, η1) . . . (Mn−1, ηn−1)

tn→ (Mn, ηn)

there is a trajectory in Ω(W)

η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉

such that (Mi, ηi) = Φ(si) for each i ∈ {0 . . . n} and viceversa.

(⇐) For each trajectory
η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉

in Ω(W), the following sequence of firings is a case ofW

ζ : Φ(s0)
t1→ Φ(s1) . . . Φ(sn−1)

tn→ Φ(sn).

Theorem 5 above enables the exploitation of planning techniques to solve the reach-
ability problem in DAW-net. Indeed, to verify whether the final marking is reachable
it is sufficient to encode it as a condition for the final state and verify the existence
of a trajectory terminating in a state where the condition is satisfied. Decidability of
the planning problem is guaranteed by the fact that domains are effectively finite, as in
Definition 9 the wr functions range over a finite subset of the domain.

6 Related Work and Conclusions

The key role of data in the context of business processes has been recently recognized.
A number of variants of PNs have been enriched so as to make tokens able to carry
data and transitions aware of the data, as in the case of Workflow nets enriched with
data [18,12], the model adopted by the business process community. In detail, Workflow
Net transitions are enriched with information about data (e.g., a variable request) and
about how it is used by the activity (for reading or writing purposes). Nevertheless,
these nets do not consider data values (e.g., in the example of Section 2.2 we would
not be aware of the values of the variable request that T4 is enabled to write). They
only allow for the identification of whether the value of the data element is defined
or undefined, thus limiting the reasoning capabilities that can be provided on top of
them. For instance, in the example of Section 2.2, we would not be able to discriminate
between the worker and the student loan for the trace in (2.2), as we would only be aware
that request is defined after T4.

The problem of incomplete traces has been investigated in a number of works of
trace alignment in the field of process mining, where it still represents one of the chal-
lenges. Several works have addressed the problem of aligning event logs and procedural
models, without [3] and with [13,12] data. All these works, however, explore the search
space of possible moves in order to find the best one aligning the log and the model.
Differently from them, in this work (i) we assume that the model is correct and we focus
on the repair of incomplete execution traces; (ii) we want to exploit state-of-the-art plan-
ning techniques to reason on control and data flow rather than solving an optimisation
problem.

We can overall divide the approaches facing the problem of reconstructing flows
of model activities given a partial set of information in two groups: quantitative and
qualitative. The former rely on the availability of a probabilistic model of execution
and knowledge. For example, in [17], the authors exploit stochastic PNs and Bayesian
Networks to recover missing information (activities and their durations). The latter
stand on the idea of describing “possible outcomes” regardless of likelihood; hence,
knowledge about the world will consist of equally likely “alternative worlds” given the
available observations in time, as in this work. For example, in [5] the same issue of
reconstructing missing information has been tackled by reformulating it in terms of a
Satisfiability(SAT) problem rather than as a planning problem.

Planning techniques have already been used in the context of business processes,
e.g., for verifying process constraints [16] or for the construction and adaptation of
autonomous process models [19,15]. In [7] automated planning techniques have been
applied for aligning execution traces and declarative models. As in this work, in [8],
planning techniques have been used for addressing the problem of incomplete execution
traces with respect to procedural models. However, differently from the two approaches
above, this work uses for the first time planning techniques to target the problem of
completing incomplete execution traces with respect to a procedural model that also
takes into account data and the value they can assume.

Despite this work mainly focuses on the problem of trace completion, the proposed
automated planning approach can easily exploit reachability for model satisfiability
and trace compliance and furthermore can be easily extended also for aligning data-
aware procedural models and execution traces. Moreover, the presented encoding in
the planning language K, can be directly adapted to other action languages with an
expressiveness comparable to C [14]. In the future, we would like to explore these
extensions and implement the proposed approach and its variants in a prototype.

A Preliminaries

A.1 Workflow Nets

Definition 12 (Petri Net [12]). A Petri Net is a triple 〈P, T, F 〉 where

– P is a set of places;
– T is a set of transitions;
– F ⊆ (P × T) ∪ (T × P) is the flow relation describing the “arcs” between places
and transitions (and between transitions and places).

The preset of a transition t is the set of its input places: •t = {p ∈ P | (p, t) ∈ F}.
The postset of t is the set of its output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of
pre- and postsets of places are analogous.

The marking of a Petri net is a total mappingM : P 7→ N.

Definition 13 (WF-net [18]). A Petri net 〈P, T, F 〉 is a workflow net (WF-net) if it has a
single source place start, a single sink place end, and every place and every transition is
on a path from start to end; i.e. for all n ∈ P ∪ T , (start, n) ∈ F ∗ and (n, end) ∈ F ∗,
where F ∗ is the reflexive transitive closure of F .

The semantics of a PN is defined in terms of its markings and valid firing of
transitions which change the marking. A firing of a transition t ∈ T fromM toM ′ is
valid – denoted byM t0→M – iff:

– t is enabled inM , i.e., {p ∈ P |M(p) > 0} ⊇ •t; and
– the markingM ′ satisfies the property that for every p ∈ P :

M ′(p) =


M(p)− 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t
M(p) otherwise

A case of PN is a sequence of valid firings

M0
t1→M1,M1

t2→M2, . . . ,Mk−1
tk→Mk

whereM0 is the marking where there is a single token in the start place.

Definition 14 (safeness). A marking of a Petri Net is k-safe if the number of tokens
in all places is at most k. A Petri Net is k-safe if the initial marking is k-safe and the
marking of all cases is k-safe.

In this document we focus on 1-safeness, which is equivalent to the original safeness
property as defined in [1].8 Note that for safe nets the range of markings is restricted to
{0, 1}.

A.2 Action Language K

The formal definition of K can be found in Appendix A of [9]; here, as reference, we
include the main concepts.

We assume disjoint sets of action, fluent and type names, i.e., predicate symbols of
arity ≥ 0, and disjoint sets of constant and variable symbols. Literals can be positive or
negative atoms; denoted by −. Given a set of literals L, L+ (respectively, L−) is the set
of positive (respectively, negative) literals in L. A set of literals is consistent no atoms
appear both positive and negated.

The set of all action (respectively, fluent, type) literals is denoted as Lact (respec-
tively, Lfl, Ltyp).

Furthermore, Lfl,typ = Lfl ∪ Ltyp, Ldyn = Lfl ∪ L+
act, and L = Lfl,typ ∪ L+

act.

Definition 15 (Causation rule). A (causation) rule is an expression of the form
caused f if b1, . . . , bk, not bk+1, . . ., not b`

after a1, . . . , am, not am+1, . . ., not an.
were f ∈ Lfl ∪ {false}, bi ∈ Lfl,typ, ai ∈ L, ` ≥ k ≥ 0 and n ≥ m ≥ 0.

If n = 0 the rule is called static.
We define h(r) = f , pre+(r) = {a1, . . . , am}, pre−(r) = {am+1, . . . , an},

post+(r) = {b1, . . . , bk}, post−(r) = {bk+1, . . . , b`}

Definition 16 (Initial state constraints). An initial state constraint is a static rule
preceded by the keyword initially.

Definition 17 (Executability condition). An executability condition e is an expression
of the form
executable a if b1, . . . , bk, not bk+1, . . ., not b`.
were a ∈ L+

act, bi ∈ Lfl,typ, and ` ≥ k ≥ 0.
We define h(e) = a, pre+(e) = {b1, . . . , bk}, and pre−(e) = {bk+1, . . . , b`}

Since in this document we’re dealing with ground plans, for the definition of typed
instantiation the reader is referred to the original paper.

8 In the following we will use safeness as a synonym of 1-safeness.

Definition 18 (Planning domain, [9] Def. A.5). An action description 〈D,R〉 consists
of a finite setD of action and fluent declarations and a finite setR of safe causation rules,
safe initial state constraints, and safe executability conditions. A K planning domain
is a pair PD = 〈Π,AD〉, where Π is a stratified Datalog program (the background
knowledge) which is safe, and AD is an action description. We call PD positive, if no
default negation occurs in AD.

The set lit(PD) contains all the literals appearing in PD.

Definition 19 (State, State transition). A state w.r.t. a planning domain PD is any
consistent set s ⊆ Lfl ∩ (lit(PD) ∪ lit(PD)−) of legal fluent instances and their
negations. A state transition is any tuple t = 〈s,A, s′〉 where s, s′ are states and
A ⊆ Lact ∩ lit(PD) is a set of legal action instances in PD.

Semantics of plans including default negation is defined by means of a Gel-
fondâĂŞLifschitz type reduction to a positive planning domain.

Definition 20. Let PD be a ground and well-typed planning domain, and let t =
〈s,A, s′〉 be a state transition. Then, the reduction PDt of PD by t is the planning
domain where the set of rules R of PD is substituted by Rt obtained by deleting

1. each r ∈ R,where either post−(r) ∩ s′ 6= ∅ or pre−(r) ∩ s 6= ∅,and
2. all default literals not ` (` ∈ L) from the remaining r ∈ R.

Definition 21 (Legal initial state, executable action set, legal state transition). For
any planning domain PD = 〈D,R〉

– a state s0 is a legal initial state, if s0 is the least set s.t. for all static and initial rules
r post(r) ⊆ s0 implies h(r) ⊆ s0;

– a set A ⊆ L+
act is an executable action set w.r.t. a state s, if for each a ∈ A there

is an executability condition e ∈ R〈s,A,∅〉 s.t. h(e) = {a}, pre(e) ∩ Lfl ⊆ s, and
pre(e) ∩ L+

act ⊆ A;
– a state transition t = 〈s,A, s′〉 is legal if A is an executable action set w.r.t. s, and
s′ is the minimal consistent set that satisfies all causation rules in R〈s,A,s′〉 w.r.t.
s ∪A. A causation rule r ∈ R〈s,A,s′〉, is satisfied if the three conditions
1. post(r) ⊆ s′
2. pre(r) ∩ Lfl ⊆ s
3. pre(r) ∩ Lact ⊆ A
all hold, then h(r) 6= {false} and h(r) ⊆ s′.

Definition 22 (Trajectory). A sequence of state transitions

〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . , 〈sn−1, An, sn〉

, n ≥ 0, is a trajectory for PD, if s0 is a legal initial state of PD and all 〈si−1, Ai, si〉,
1 ≤ i ≤ n, are legal state transitions of PD.

If n = 0, then the trajectory is empty.

Definition 23 (Planning problem). A planning problem is a pair of planning domain
PD and a ground goal q

g1, . . . , gm, not gm+1, . . ., not gn.
where gi ∈ Lft and n ≥ m ≥ 0.

A state s satisfies the goal if {g1, . . . , gm} ⊆ s and {gm+1, . . . , gn} ∩ s = ∅.

Definition 24 (Optimistic plan). A sequence of action setsA1, . . . , Ak is an optimistic
plan for a planning problem 〈PD, q〉 if there is a trajectory 〈s0, A1, s1〉, . . . , 〈sk−1, Ak, sk〉
establishing the goal q, i.e. sk satisfies q.

Definition 25 (Secure plan). An optimistic planA1, . . . , An is secure if for every legal
initial state s0 and trajectory 〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . , 〈sk−1, Ak, sk〉 0 ≤ k ≤ n,
it holds that

1. if k = n then sk satisfies the goal;
2. if k < n, then there is a legal transition 〈sk, Ak+1, sk+1〉.

B Framework

B.1 Data Model

Definition 26 (Data model). A data model for is a coupleD = (V, ∆, dm, ord) where:
– V is a possibly infinite set of variables;
– ∆ = {∆1, . . . ,∆n} is a set of domains (not necessarily disjoints);
– dm : V → ∆ is a total and surjective function which associate to each variable v
its finite domain ∆i;

– ord is a partial function that, given a domain∆i, if ord(∆i) is defined, then it returns
a partial order (reflexive, antisymmetric and transitive) ≤∆i⊆ ∆i ×∆i.

Definition 27 (Assignment). LetD = 〈V, ∆, dm, ord〉 be a data model. An assignment
for variables in V is a partial function η : V → ∆v such that for each v ∈ V , if η(v)
is defined, then we have η(v) ∈ dm(v). We write Φ[η] for the formula Φ where each
occurrence of a variable v ∈ img(η) is replaced by η(v).

Definition 28 (Guard language, syntax). Given a data model, the language L(D) of
guards is the set of formulas Φ inductively defined according to the following grammar:

Φ := true | def(v) | t1 = t2 | t1 ≤ t2 | ¬Φ1 | Φ1 ∧ Φ2

where v ∈ V and t1, t2 ∈ V ∪
⋃
i∆i.

Definition 29 (Guard language, semantics). Given a data model D, an assignment η
and a guard Φ ∈ L(D) we say that D, η satisfies Φ, written D, η |= Φ inductively on
the structure of Φ as follows:

– D, η |= true;
– D, η |= def(v) iff v ∈ img(η);
– D, η |= t1 = t2 iff t1[η], t2[η] 6∈ V and t1[η] ≡ t2[η];
– D, η |= t1 ≤ t2 iff t1[η], t2[η] ∈ ∆i for some i and ord(∆i) is defined and
t1[η] ≤∆i t2[η];

– D, η |= ¬Φ iff it is not the case that D, η |= Φ;
– D, η |= Φ1 ∧ Φ2 iff D, η |= Φ1 and D, η |= Φ2.

B.2 Petri Nets with Data

Definition 30 (DAW-net). A Petri Net with data is a tuple 〈D,N ,wr, gd〉 where:

– N = 〈P, T, F 〉 is a Petri Net;
– D = 〈V, ∆, dm, ord〉 is a data model;
– wr : T 7→ (V ′ 7→ 2dm(V)), where V ′ ⊆ V and wr(t)(v) ⊆ dm(v) for each v ∈ V ′, is

a function that associate each transition to a (partial) function mapping variables
to a subset of their domain.

– gd : T 7→ L(D) a function that associates a guard expression to each transition.

The definition of wr provides a fine grained description of the way that transitions
modify the state of the DAW-net, enabling the description of different cases:

– ∅ ⊂ wr(t)(v) ⊆ dm(v): transition t nondeterministically assigns a value from
wr(t)(v) to v;9

– wr(t)(v) = ∅: transition t deletes the value of v (undefined);
– v 6∈ dom(wr(t)): value of v is not modified by transition t.

Definition 31. A state of a DAW-net 〈D,N ,wr, gd〉 is a pair (M,η) where M is a
marking for 〈P, T, F 〉 and η is an assignment. State transitions and firing are adapted
to the additional information about data.

Definition 32 (Valid Firing). Given a DAW-net 〈D,N ,wr, gd〉, a firing of a transition
t ∈ T is valid firing in (M,η) resulting in a state (M ′, η′) (written as (M,η)

t→
(M ′, η′)) iff:

– t is enabled inM , i.e., {p ∈ P |M(p) > 0} ⊇ •t; and
– D, η |= gd(t);
– the markingM ′ satisfies the property that for every p ∈ P :

M ′(p) =


M(p)− 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t
M(p) otherwise

– the assignment η′ satisfies the properties that its domain is

dom(η′) = dom(η) ∪ {v | wr(t)(v) 6= ∅} \ {v | wr(t)(v) = ∅}

and for each v ∈ dom(η′):

η′(v) =

{
d ∈ wr(t)(v) if v ∈ dom(wr(t))
η(v) otherwise.

Cases of DAW-net are defined as those of WF-nets, with the only difference that in
the initial state the assignment is empty.

9 Allowing a subset of dm(v) enables the specification of restrictions for specific tasks, e.g.,
while a task selects among yes, no, maybe another one can only choose between yes and
no.

C Trace completion as Reachability

Within this document we consider the possibility that some of the activities can be
observable or not. In the sense that they might or can never appear in logs. This enables
a fine grained information on the different type of activities that compose a process. For
example, is common practice in modelling the introduction of transitions for routing
purposes (e.g. and-joins) that do not correspond to real activities and as such they would
never be observed. On the other end, some activities must be logged by their nature
– e.g. a database update – so if they are not observed we can be sure that they never
occurred. We use the term always observable for transitions that must appear in the logs
and never observable for those that would never appear in logs; all other transitions may
or may not be present in the logs but they may occur in actual cases.

Since the focus of the paper is on the use of planning techniques to provide reasoning
services for workflows with data, we decided to omit this aspect for reasons of space.

Definition 33 (Trace). Let Let P = 〈D,N ,wr, gd〉 be a DAW-net. An event of P is
a tuple 〈t, w,wd〉 where t ∈ T is a transition, w ∈ dm(V)V′ – with V ′ ⊆ V and
w(v) ∈ wr(t)(v) for all v ∈ V ′ – is a partial function that represents the variables
written by the execution of t, and wd ⊆ V the set of variables deleted (undefined) by the
execution of t. Obviously, wd ∩ V ′ = ∅.

A trace of P is a finite sequence of events τ = (e1, . . . , en). In the following we
indicate the i-th event of τ as τ i. Given a set of tasks T , the set of traces is inductively
defined as follows:
– ε is a trace;
– if τ is a trace and e an event, then τ · e is a trace.

Definition 34 (Trace Compliance). A (valid) firing (M,η)
t→ (M ′, η′) is compliant

with an event 〈t′, w, wd〉 iff t = t′, wd = {v | wr(t′)(v) = ∅}, dom(η′) = dom(w) ∪
dom(η) \ wd, and for all v ∈ dom(w) w(v) = η′(v).

A case
(M0, η0)

t1→ (M1, η1) . . . (Mk−1, ηk−1)
tk→ (Mk, ηk)

is compliant with the trace τ = (e1, . . . , e`) iff there is an injective mapping γ between
[1 . . . `] and [1 . . . k] such that:10

∀i, j s.t. 1 ≤ i < j ≤ ` γ(i) < γ(j) (1)

∀i s.t. 1 ≤ i ≤ ` (Mγ(i−1), ηγ(i−1))
tγ(i)→ (Mγ(i), ηγ(i)) is compliant with ei (2)

∀i s.t. 1 ≤ i ≤ k ti always observable implies ∃j s.t. γ(j) = i (3)

We assume that theworkflow starts and terminateswith special transitions – indicated
by startt and endt – while start and end denote start place and sink respectively.

Definition 35 (Trace workflow). Let W = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a DAW-net
and τ = (e1, . . . , en) – where ei = 〈ti, wi, wdi 〉 – a trace of W . The trace workflow

10 If the trace is empty then ` = 0 and γ is empty.

W τ = 〈D,N τ = 〈P τ , T τ , F τ 〉,wrτ , gdτ 〉 is defined as following:

P τ = P ∪ {pe0} ∪ {pe | e ∈ τ} pe0 , pe new places
T τ = T ∪ {te | e ∈ τ} te new transitions
F τ = F ∪

{(tei , p) | i = 1 . . . n, (ti, p) ∈ F} ∪ {(p, tei) | i = 1 . . . n, (p, ti) ∈ F} ∪
{(tei , pei) | i = 1 . . . n} ∪ {(pei−1

, tei) | i = 1 . . . n} ∪ {(startt, pe0), (pen , endt)}

wrτ (t) =

{
{(v, {j}) | (v, j) ∈ wi} ∪ {(v, ∅) | v ∈ wdi } for t = tei
wr(t) for t ∈ T

gdτ (t) =


gd(ti) for t = tei
false for t ∈ T fully observable
gd(t) for t ∈ T not fully observable

It’s not difficult to see that whenever the original DAW-net W is a workflow net,
thenW τ is a workflow net as well because the newly introduced nodes are in a the path
start, startt, pe0 , te1 , pe1 , . . . , ten , pen , endt, end.

To relate cases from W τ to the original workflow W we introduce a “projection”
function Πτ that maps elements from cases of the enriched workflow to cases using
only elements from the original workflow. To simplify the notation we will use the same
name to indicate mappings from states, firings and cases.

Definition 36. Let W = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a DAW-net, τ = (e1, . . . , en)
– where ei = 〈ti, wi, wdi 〉 a trace ofW , andW τ = 〈D,N τ = 〈P τ , T τ , F τ 〉,wrτ , gdτ 〉
the corresponding trace workflow. The mapping Πτ is defined as following:

1. let (M ′, η′) be a marking ofW τ , then

Πτ (M
′) = (M ′ ∩ P × N)

is a state ofW ;
2. let (M ′, η′) be a state ofW τ , then

Πτ ((M
′, η′)) = (Πτ (M

′), η′)

is a state ofW ;
3. let t be a transition in T τ , then

Πτ (t) =

{
ti for t = tei
t for t ∈ T

4. let (M,η)
t→ (M ′, η′) be a firing inW τ , then

Πτ ((M,η)
t→ (M ′, η′)) = Πτ ((M,η))

Πτ (t)→ Πτ ((M
′, η′))

5. let C = f0, . . . , fk be a case ofW τ , then

Πτ (C) = Πτ (f0), . . . ,Πτ (fk)

In the following we consider a DAW-net W = 〈D,N = 〈P, T, F 〉,wr, gd〉 and a
trace τ = (e1, . . . , en) ofW –where ei = 〈ti, wi, wdi 〉. LetW τ = 〈D,N τ = 〈P τ , T τ , F τ 〉,wrτ , gdτ 〉
be the corresponding trace workflow. To simplify the notation, in the following we will
use te0 as a synonymous for startt and ten+1 as endt; as if they were part of the trace.

Lemma 5. Let C be a case ofW τ , then Πτ (C) is a case ofW .

Proof. Let C = (M0, η0)
t1→ (M1, η1) . . . (Mk−1, ηk−1)

tk→ (Mk, ηk), to show that
Πτ (C) is a case of W we need to prove that (i) Πτ ((M0, η0)) is an initial state of W
and that (ii) the firingΠτ ((Mi−1, ηi−1)

ti→ (Mi, ηi)) is valid w.r.t.W for all 1 ≤ i ≤ n.
i) By definition Πτ ((M0, η0)) = (Πτ (M0), η

′) and Πτ (M0) ⊆ M0. Since the start
place is in P , then start is the only place with a token in Πτ (M0).

ii) Let consider an arbitrary firing fi = (Mi−1, ηi−1)
ti→ (Mi, ηi) in C (valid by

definition), then Πτ (fi) = (Πτ (Mi−1), ηi−1)
Πτ (ti)→ (Πτ (Mi), ηi).

Note that – by construction – gd(ti) = gd(Πτ (ti)),Πτ (ti)
• = t•i ∩ P , •Πτ (ti) =

•ti ∩P , dom(wr(ti)) = dom(wr(Πτ (ti))) and wr(ti)(v) ⊆ wr(Πτ (ti))(v) ; there-
fore
– {p ∈ P τ | Mi−1 > 0} ∩ P = {p ∈ P | Πτ (Mi−1) > 0} ⊇ •Πτ (ti) because
{p ∈ P τ |Mi−1 > 0} ⊇ •ti;

– D, η |= gd(Πτ (ti)) because D, η |= gd(ti)
– for all p ∈ P Πτ (Mj)(p) =Mj(p), therefore:

Mi(p) = Πτ (Mi)(p) =


Mi−1(p)− 1 = Πτ (Mi−1)(p)− 1 if p ∈ •Πτ (ti) \Πτ (ti)

•

Mi−1(p) + 1 = Πτ (Mi−1)(p) + 1 if p ∈ Πτ (ti)
• \ •Πτ (ti)

Mi−1(p) = Πτ (Mi−1)(p) otherwise

because fi is valid w.r.t.W τ ;
– the assignment ηi satisfies the properties that its domain is

dom(ηi) = dom(ηi−1)∪{v | wr(Πτ (ti))(v) 6= ∅}\{v | wr(Πτ (ti))(v) = ∅}

and for each v ∈ dom(ηi):

ηi(v) =

{
d ∈ wr(ti)(v) ⊆ wr(Πτ (ti))(v) if v ∈ dom(wr(ti)) = dom(wr(Πτ (ti)))

ηi−1(v) otherwise.

because fi is valid.

Before going into details, we will consider some properties of the “trace” workflow.

Lemma 6. LetW = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a DAW-net and τ = (e1, . . . , en) –
where ei = 〈ti, wi, wdi 〉–a trace ofW . IfC = (M0, η0)

t1→ (M1, η1) . . . (Mk−1, ηk−1)
tk→

(Mk, ηk) is a case ofW τ then for all 0 ≤ i ≤ k:

Σp∈P τ\PMi(p) ≤M0(start)

Proof. By induction on the length of C.

– For k = 1 then the only executable transition is startt, therefore t1 = startt which
– by assumption – has two output places and – by construction – start•t \P = {pe0}.
Since the firing is valid, thenM1(pe0) =M0(pe0) + 1 = 1 ≤M0(start).

– Let’s assume that the property is true a case C of length n and consider C ′ =
C(Mn, ηn)

tn+1→ (Mn+1, ηn+1). By construction, each p ∈ P τ \ P has a single
incoming edge and {t ∈ T τ | ei ∈ t•} = {tei} and {t ∈ T τ | ei ∈ •t} = {tei+1

}.
Therefore the only occurrence in which a pei ∈ P τ \ P can increase its value is
when tn+1 = tei . Since the transition is valid, thenMn+1(pei) =Mn(pei)+1 and
Mn+1(pei−1

) =Mn(pei−1
)−1; thereforeΣp∈P τ\PMi(p) = Σp∈P τ\PMi−1(p) ≤

M0(start) – by the inductive hypothesis.

Lemma 7. LetW = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a DAW-net and τ = (e1, . . . , en) –
where ei = 〈ti, wi, wdi 〉 – a trace ofW ,C = (M0, η0)

t1→ (M1, η1) . . . (Mk−1, ηk−1)
tk→

(Mk, ηk) a case ofW τ , and tei is a transition of a firing fm in C with 1 ≤ i ≤ n, then
(i) tei−1

is in a transition of a firing in C that precedes fm, (ii) and ifM0(start) = 1
then there is a single occurrence of tei in C.

Proof. The proof for the first part follows from the structure of the workflow net; because
– by construction – each p ∈ P τ \ P has a single incoming edge and {t ∈ T τ | ei ∈
t•} = {tei} and {t ∈ T τ | ei ∈ •t} = {tei+1

}. Since each firing must be valid – if

fm = (Mm−1, ηm−1)
tei→ (Mm, ηm) is in C, thenMm−1(pei−1

) ≥ 1 and this can only

be true if there is a firing fr = (Mr−1, ηr−1)
tei−1→ (Mr, ηr) in C s.t. r < m.

To prove the second part is enough to show that for each 1 ≤ i ≤ n, if tei appears
more than once in C then there must be multiple occurrences of tei−1

as well. In fact,
if this is the fact, then we can use the previous part to show that there must be multiple
occurrences of te0 = start, and this is only possible ifM0(start) > 1.

By contradiction let’s assume that there are two firings fm and f ′m, with m < m′,
with the same transition tei , but there is only a single occurrence of tei−1

in a firing
fr. Using the previous part of this lemma we conclude that r < m < m′, therefore
Mm−1(pei−1

) = 1 because a token could be transferred into pei−1
only by tei−1

, so
Mm(pei−1) = 0. In the firings betweenm andm′ there are no occurrences of tei−1 , so
Mm′−1(pei−1) = Mm(pei−1) = 0 which is in contradiction with the assumption that
f ′m is a valid firing.

Now we’re ready to show that the “trace” workflow characterises all and only the
cases compliant wrt the given trace. We divide the proof into correctness and complete-
ness.

Lemma 8 (Correctness).LetC = (M0, η0)
t1→ (M1, η1) . . . (Mk−1, ηk−1)

tk→ (Mk, ηk)
be a case ofW τ s.t.M0(start) = 1, and ` = max({i | ti is in a firing of C} ∪ {0}),
then the caseΠτ (C) ofW is compliant with τ ′ = (e1, . . . , e`) or the empty trace if ` is
0.

Proof. By induction on the length of C.

– If C = (M0, η0)
t1→ (M1, η1) then t1 = startt because the firing is valid and the

only place with a token inM0 is start; therefore ` = 0 and τ ′ is the empty trace. C
trivially satisfy the empty trace because no observable transitions are in Πτ (C).

– Let C = (M0, η0)
t1→ (M1, η1) . . . (Mk−1, ηk−1)

tk→ (Mk, ηk) s.t. Πτ (C) is
compliant with τ ′. Let’s consider C ′ = C · (Mk, ηk)

tk+1→ (Mk+1, ηk+1): either
tk+1 ∈ T τ \ T or tk+1 ∈ T . In the first case tk+1 = te` for some 1 ≤ ` ≤ n, and –
by using Lemma 7 – inC there are occurrences of all the tei for 1 ≤ i < ` and it’s the
only occurrence of te` . This means that ` = max({i | ti is in a firing of C} ∪ {0})
and we can extend γ to γ′ by adding the mapping from ` to k + 1. The map-
ping is well defined because of the single occurrence of te` . By definition of te` ,
(Mk, ηk)

tk+1→ (Mk+1, ηk+1) is compliant with e` and the mapping Πτ preserve
the assignments, therefore Πτ (Mk, ηk)

tk+1→ (Mk+1, ηk+1) is compliant with e` as
well. By using the inductive hypnotises we can show that C ′ is compliant as well.
In the second case the mapping is not modified, therefore the inductive hypothesis
can be used to provide evidence of the first two conditions for trace compliance of
Definition 34. For the third (transitions always observable) it’s sufficient to consider
that tk+1 cannot be always observable because its guard is never satisfiable inW τ .

Lemma 9 (Completeness).LetC = (M0, η0)
t1→ (M1, η1) . . . (Mk−1, ηk−1)

tk→ (Mk, ηk)
be a case of W compatible with τ = (e1, . . . , en), then there is a case C ′ of W τ s.t.
Πτ (C

′) = C.

Proof. Since C is compliant with τ , then there is a mapping γ satisfying the conditions

of Definition 34. Let C ′ = (M ′0, η0)
t′1→ (M ′1, η1) . . . (M

′
k−1, ηk−1)

t′k→ (M ′k, ηk) a
sequence of firing ofW τ defined as following:

– M ′0 =M0 ∪ {(pei , 0) | 0 ≤ i ≤ n}
– t′1 = t1 andM ′1 =M1 ∪ {(pej , 0) | 1 ≤ j ≤ n} ∪ {(pe0 , 1)}

– for each (M ′i−1, ηi−1)
t′i→ (M ′i , ηi), 2 ≤ i ≤ n:

• if there is ` s.t. γ(`) = i then t′i = te` and

M ′i =Mi ∪ {(pej , 0) | 0 ≤ j ≤ n, j 6= `} ∪ {(pe` , 1)}

• otherwise t′i = ti and

M ′i =Mi ∪ (M ′i−1 ∩ (P τ \ P)× N)

It’s not difficult to realise that by construction Πτ (C
′) = C.

To conclude the proof we need to show thatC ′ is a case ofW τ . Clearly (M ′0, η0) is a
starting state, so we need to show that all the firings are valid. The conditions involving
variables – guards and update of the assignment – follows from the fact that the original
firings are valid and the newly introduced transitions are restricted according to the trace
data.

Conditions on input and output places that are both in W and W τ are satisfied
because of the validity of the original firing. The newly introduced places satisfy the
conditions because of the compliance wrt the trace, which guarantees that for each firing
with transition te` there is the preceding firing with transition te`−1

that put a token in
the pe`−1

place.

Theorem 3. LetW be a DAW-net and τ = (e1, . . . , en) a trace; thenW τ characterises
all and only the cases ofW compatible with τ . That is
⇒ if C is a case ofW τ containing ten then Πτ (C) is compatible with τ ; and
⇐ ifC is a case ofW compatible with τ , then there is a caseC ′ ofW τ s.t.Πτ (C

′) = C.

Proof.

⇒ If C is a case ofW τ containing ten , then ` of Lemma 8 is n therefore τ ′ = τ and
Πτ (C) is compatible with τ .

⇐ IfC is compatiblewith τ then byLemma9 there is a caseC ′ ofW τ s.t.Πτ (C
′) = C.

Theorem 4. LetW = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a DAW-net and τ = (e1, . . . , en)
– where ei = 〈ti, wi, wdi 〉 – a trace ofW . IfW is k-safe thenW τ is k-safe as well.

Proof. We prove the theorem by induction on the length of a case C = (M0, η0)
t1→

(M1, η1) . . . (Mk−1, ηk−1)
tk→ (Mk, ηk). Note that by construction, for any markingM ′

ofW τ and p ∈ P ,M ′(p) = Πτ (M
′)(p).

– For a case of length 1 the property trivially holds because by definitionM0(start) ≤
k and for each p ∈ P τ (different from start)M0(start) = 0, and since (M0, η0)

t1→
(M1, η1) is valid the only case in which the number of tokens in a place is increased
is for p ∈ t•1 \ •t1. For any p different from start this becomes 1 ≤ k; while
since the start place – by assumption – doesn’t have any incoming arc therefore
M1(start) =M0(start)− 1 ≤ k.

– For the inductive step we assume that each marking M0, . . .Mm−1 is k-safe. By
contradiction we assume that Mm is not k-safe; therefore there is a place p ∈ P τ
s.t. Mm > k. There are two cases, either p ∈ P τ \ P or p ∈ P . In the first case
there is a contradiction because, by Lemma 6, Σp∈P τ\PMi(p) ≤M0(start) = k.
In the second case, since Πτ (C) is a case ofW and Πτ (Mm)(p) =Mm(p), there
is a contradiction with the hypothesis thatW is k-safe.

D Encoding Reachability as Planning Problem

D.1 Encoding WF-nets behaviour

Let PN = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a safe DAW-net be a safe WF-net, we define
the planning problem Ω(W) = 〈Π,D,R, q〉 by introducing a fluent for each place and
an action for each task. Execution and causation rules constraint the plan to mimic the
behaviour of the petri net.

Declarations

– D contains a fluent declaration p for each place p ∈ P ;
– D contains an action declaration t for each task t ∈ T ;

Executability rules

– actions are executable if each input place has a token; i.e. for each task t ∈ T , given
{it1, . . . , itn} = •t, there’s an executability rule:

executable t if it1, . . . , itn.

Causation rules

– parallelism is disabled; for each pair of tasks t1, t2 ∈ T there’s the rule:11
caused false after t1, t2.

– after the execution of a task, input conditions must be “cleared” and tokens moved to
the output ones; for each task t ∈ T and {it1, . . . , itn} = •t \ t•, {ot1, . . . , otk} = t•:

caused −it1 after t. . . . caused −itn after t.
caused ot1 after t. . . . caused otk after t.

– the positive state of the places is inertial (i.e. must be explicitly modified); for each
p ∈ P :

caused p if not −p after p.

Initial state

– The only place with a token is the source:
initially: i.

Goal

The formulation of the goal depends on the actual instance of the reachability
problem we need to solve. E.g. it can be a specific marking:

– The only place with a token is the sink:
goal: o, not p1, . . ., not pk?

where {p1, . . . , pk} = P \ {o}.

D.2 Encoding of Data

To each variable v ∈ V corresponds to a inertial fluent predicate varv with a single argu-
ment “holding” the value of the variable, and a “domain” predicate domv representing
the domain of the variable. Unset variables have no positive instantiation of the varv
predicate. The predicate varv must be functional.

We introduce also auxiliary fluents that indicate whether a variable is not undefined
defv – used both in tests and to enforcemodels where the variable is assigned/unassigned
– and chngv to “inhibit” inertia when variables might change because of the result of an
action.

11 There’s aKmacro to disable concurrency. In practice concurrency could be enabled for actions
that do not share input or output places.

Constraints on variables For each variable v ∈ V:

– functionality
caused false if varv(X), varv(Y), X != Y.

– variable defined predicate
caused defv if varv(X).

– variable fluents are inertial unless they can be modified by actions
caused varv(X) if not −varv(X), not chngv after varv(X).

– the background knowledge (Π) includes the set of facts:
domv,t(d).

for each v ∈ V , t ∈ T , and d ∈ wr(t)(v).

Guards To each task t is associated a fluent grdt that is true when the corresponding
guard is satisfied. Instead of modifying the executability rule including the grdt among
the preconditions, we use a constraint rule ruling out executions of the action whenever
its guard is not satisfied:

caused false after t, not grdt.
This equivalent formulation simplify the proofs because of its incremental nature (there
are just additional rules).

Translation of atoms (ξ) is defined in terms of varv predicates, e.g., ξ(v = w)
corresponds to varv(V), varw(W), V == W. The defv predicate can be used to test whether
a variable is defined, or undefined, i.e. not defv .

The guard gd(t) = (a1,1 ∧ . . .∧ a1,n1)∨ . . .∨ (ak,1 ∧ . . .∧ ak,nk) where each ai,j
is an atom, corresponds to the set of rules for grdt:12

caused grdt if ξ(a1,1), . . ., ξ(a1,n1
).

...
caused grdt if ξ(ak,1), . . ., ξ(a1,nk).

Variables update The value of a variable is updated by means of causation rules that
depend on the task t that operates on the variable:

– wr(t)(v) = ∅: delete (undefine) a variable v
caused false if defv after t.
caused chngv after t.

– wr(t)(v) ⊆ dm(v): set v with a value nondeterministically chosen among a set of
elements from its domain

caused varv(V) if domv,t(V), not −varv(V) after t.
caused −varv(V) if domv,t(V), not varv(V) after t.
caused chngv after t.
caused false if not defv after t.

If wr(t)(v) contains a single element e, then there the assignment is deterministic
and the above rules can be substituted with13

12 Arbitrary expressions can be easily translated by introducing newfluents for the subexpressions.
13 The deterministic version is a specific case of the non-deterministic ones and equivalent in the
case that there is a single domv,t(d) fact. In the following, the proofs will consider the general
non-deterministic formulation only.

caused varv(d) after t.
caused chngv after t.

Guards To each subformula ϕ of transition guards is associated a fluent grdϕ that is true
when the corresponding formula is satisfied. To simplify the notation, for any transition
t, we will use grdt to indicate the fluent grdgd(t).

Executability of transitions is conditioned to the satisfiability of their guards:
caused false after t, not grdt.
Translation of atoms (ξ) is defined in terms of varv predicates. We assume a binary

ord predicate representing the partial order among the elements of the domains. We also
assume that elements of

⋃
i∆i can be directly represented by constants of K language.

For t ∈ V ∪
⋃
i∆i and T a K variable we define

ξ(t, T) =

{
vart(T) for t ∈ V
T == t for t ∈

⋃
i∆i

For each subformula ϕ of transition guards a static rule is included to “define” the

fluent grdϕ:

true : caused grdϕ if true .
def(v) : caused grdϕ if defv .
t1 = t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), T1 == T2 .
t1 ≤ t2 : caused grdϕ if ξ(t1,T1), ξ(t2,T2), ord(T1,T2) .
¬ϕ1 : caused grdϕ if not grdϕ1

.
ϕ1 ∧ . . . ∧ ϕn : caused grdϕ if grdϕ1

, . . . , grdϕn .

D.3 Correctness and completeness

Definition 37 (Φ(·) function). Let W = 〈D,N = 〈P, T, F 〉,wr, gd〉 be a safe DAW-
net,M the set of its markings, H the set of all assignments, Ω(W) the corresponding
planning problem and S the set of its states, namely, the set of all consistent set of
ground fluent literals. We define the function Φ(·) : S → M× H mapping planning
and DAW-net states. For any consistent s ∈ S, Φ(s) = (M,η) is defined as follows:

∀p ∈ P M(p) =

{
1 if p ∈ s
0 otherwise

η = {(v, d) | varv(d) ∈ s}

The function Φ(·) is well defined because s is assumed to be consistent therefore it
cannot be the case that {varv(d), varv(d′)} ⊆ s with d 6= d′ otherwise the static rule

caused false if varv(X), varv(Y), X != Y.
would not be satisfied.

Moreover, since we assume thatW is safe, we can restrictM to markings with range
restricted to {0, 1} and there is not loss of information between markings and planing
states.

The function Φ(·) is not injective because of the strongly negated atoms. However
it can be shown that if two states differ on the positive atoms then the corresponding
DAW-net states are different as well:

Lemma 10. Let s and s′ consistent states in S, then s ∩ L+ 6= s′ ∩ L+ implies
Φ(s) 6= Φ(s′).

Observing the static rules (those without the after part) it can be noted those defining
the predicates defv and grdt are stratified, therefore their truth assignment depends only
on the extension of varv(·) predicates. This fact can be used to show that

Lemma 11 (Guards translation). Let s ∈ S satisfying the static rules ofΩ(W), and ϕ
a subformula of transition guards inW . Given Φ(s) = (M,η), grdϕ ∈ s iff D, η |= ϕ.

Proof. We prove the lemma by structural induction on ϕ. First we consider the base
cases.
true : trivially satisfied because true is in consistent state.
def(v) : the only rule where defv is in the head is

caused defv if varv(X).
therefore defv ∈ s iff there is a constant d s.t. varv(d) ∈ s, and that is the case iff
v ∈ dom(η).

t1 = t2 : for the sake of simplicity we consider only the case in which t1 ≡ v is a
variable and t2 ≡ d is a constant; the other 3 combinations can be demonstrated in
the same way. With this assumption, the only rule with grdϕ in the head is

caused grdϕ if varv(T1), T2 == d, T1 == T2 .
therefore grdϕ ∈ s iff varv(d) ∈ s, and this is the case iff η(v) = d.

t1 ≤ t2 : this case is analogous to the previous one, where we consider the predicate
ord(T1,T2) instead of equality. Since ord facts correspond to the orders defined in
D, then we can conclude.
For the inductive step we assume that the property holds for subformulae ϕ1, ϕ2.

¬ϕ1 : the only rule with grdϕ in the head is
caused grdϕ if not grdϕ1

.
therefore grdϕ ∈ s iff grdϕ1

6∈ s. We can use the inductive hypothesis to conclude
that this is the case iff D, η 6|= ϕ1, that is D, η |= ϕ.

ϕ1 ∧ . . . ∧ ϕn : the only rule with grdϕ in the head is
caused grdϕ if grdϕ1

, . . . , grdϕn .
therefore grdϕ ∈ s iff {grdϕ1

, . . . , grdϕn} ⊆ s. We can use the inductive hypothesis
to show that this is the case iff D, η |= ϕ1 ∧ . . . ϕn because they are all ground
terms.

Looking at the guard translation rules and the proof of Lemma 11 it is not difficult
to realise that according to the structure of the guards some of the rules are redundant
and can be simplified. E.g. defv can be used in place of grddefv , not grdϕ in place of
grddef¬ϕ , and t1 = t2 can be expanded in place of grdt1=t2 unless they are in the scope
of a negation.

Lemma 12 (Completeness). LetW be a safe DAW-net and Ω(W) the corresponding
planning problem.

Let (M,η)
t→ (M ′, η′) be a valid firing of W , then for each consistent state s s.t.

Φ(s) = M there is a consistent state s′ s.t. Φ(s′) = M ′ and 〈s, {t}, s′〉 is a legal
transition in Ω(W).

Proof. Let s be a consistent state s.t. Φ(s) = M . Note that such s exists because Φ(·)
involves only the positive literals; therefore any consistent set s′ s.t. {p ∈ P | M(p) >
0} ∪ {varv(d) | (v, d) ∈ η} ⊆ s′ and s′ ∩ ({p ∈ P | M(p) < 1} ∪ V × dm(V) \ η
satisfies the property that Φ(s′) =M .

We define a new state s′ such that 〈s, {t}, s′〉 is a legal state transition and such that
Φ(s′) =M ′; this new state is the union of the following parts:

s′P+ = {p ∈ P |M ′(p) > 0} s′P− = {−p | p ∈ •t \ t•}
s′V+ = {varv(d) | (v, d) ∈ η′} s′V− = {−varv(d) | d ∈ wr(t)(v), (v, d) 6∈ η′}
s′V↓ = {defv | varv(d) ∈ s

′
V+}

s′Vc = {chngv | v ∈ dom(wr(t))}
s′wr = {domv,t(d) | ∀v, t, d.d ∈ wr(t)(v)}
s′gd = {grdt | ∀t.M, η |= gd(t)}

By constructionΦ(s′) =M and it is consistent: s′P+∩s′P− = ∅ because the fact that
(M,η)

t→ (M ′, η′) is a valid firing implies p ∈ •t \ t•M ′(p) = 0, and s′V+ ∩ s′V− = ∅
because their conditions are mutually exclusive.

Since (M,η)
t→ (M ′, η′) is valid, then •t ⊆ s because Φ(s) = M , therefore the

corresponding executable condition with t in the head
executable t if it1, . . . , itn.

is satisfied.
We need to show that all the causation rules in Ω(W)〈s,{t},s

′〉 are satisfied and that
s′ is minimal.

– For each pair of tasks t1, t2, the positive rule:
caused false after t1, t2.

is satisfied because there is only a task t in the action set.
– Consider the rules

caused −ia1 after a. . . . caused −ian after a.
caused oa1 after a. . . . caused oak after a.

where {ia1 , . . . , ian} = •a\a•, {oa1 , . . . , oak} = a•\•a. For all a 6= t they are satisfied
because the after condition is false. For a = t the validity of (M,η)

t→ (M ′, η′)
ensures that •t \ t• ⊆ s′P− and t• ⊆ s′P+ , therefore the rules are satisfied.

– For each p ∈ P :
caused p if not −p after p.

we consider the three cases where p ∈ •t \ t•, p ∈ t•, or p 6∈ (•t ∪ t•).
p ∈ •t \ t• then−p ∈ s′P− by construction, therefore the rule is not inΩ(W)〈s,{t},s

′〉

p ∈ t• then M ′(p) = 1 and by construction p ∈ s′P+ and −p 6∈ s′P+ because s′

is consistent, so the rule caused p after p. is in Ω(W)〈s,{t},s
′〉. This rule is

satisfied if p ∈ s and also if p 6∈ s.
p 6∈ (•t ∪ t•) then M ′(p) = M(p). If p ∈ s′P+ the rule caused p after p. is in

Ω(W)〈s,{t},s
′〉 it’s satisfied regardless of the value ofM(p); on the other end,

if p 6∈ s′ then M(p) = 0 therefore even if caused p after p. would be in
Ω(W)〈s,{t},s

′〉 then it’d be satisfied because its after part is false.

– Functionality rules
caused false if varv(X), varv(Y), X != Y.

is satisfied by construction of s′V+

– Variable defined predicate rules
caused defv if varv(X).

are satisfied by construction of s′V↓ .
– variable fluents are inertial
– The background knowledge facts

domv,t(d).
are satisfied by construction of s′wr

– The guard predicates rules are satisfied by Lemma 11 and the construction of s′gd.

For rules involving the varv predicates (including intertiality rules) we consider the
three cases: v 6∈ dom(wr(t)), wr(t)(v) = ∅, and wr(t)(v) 6= ∅. Note that, since the
transition includes only t, all the rules in Ω(W)〈s,{t},s

′〉 with a different action in the
after part are satisfied; therefore we focus on the remaining ones.

v 6∈ dom(wr(t)): in this case the only rule inΩ(W)〈s,{t},s
′〉 to verify is the inertial one

caused varv(X) if not −varv(X), not chngv after varv(X).
and by construction −varv(d) 6∈ s′V− for any d and chngv 6∈ s′Vc . This would be
not satisfied only in the case that for some d varv(d) ∈ s and varv(d) 6∈ s – which
means that (v, d) ∈ η and (v, d) 6∈ η – but his would be in contradiction with the
fact that (M,η)

t→ (M ′, η′) is a valid firing.
wr(t)(v) = ∅: in this case the corresponding rules are

caused false if defv after t.
caused chngv after t.
caused varv(X) if not −varv(X), not chngv after varv(X).

Since there is no d s.t. (v, d) ∈ η′ then varv(d′) 6∈ s′V+ for any d′, therefore
defv 6∈ s′V↓ and the first rule is satisfied. The second rule is satisfied by construction
of s′Vc , and the third is not be in Ω(W)〈s,{t},s

′〉 because chngv ∈ s′Vc .
wr(t)(v) 6= ∅: the rules are

caused varv(V) if domv,t(V), not −varv(V) after t.
caused −varv(V) if domv,t(V), not varv(V) after t.
caused chngv after t.
caused false if not defv after t.
caused varv(X) if not −varv(X), not chngv after varv(X).

The first two rules are satisfied by construction of s′V+ and s′V− , while the third by
s′Vc . The fourth because of the fact that the firing is valid, therefore there is a value
d ∈ wr(t)(v) s.t. (v, d) ∈ η′, so varv(d) ∈ s′V+ and defv ∈ s′V↓ . Last rule is not in
Ω(W)〈s,{t},s

′〉 because chngv ∈ s′Vc .

To demonstrate the minimality of s′ we need to show that removing one literal
from any of the components s′P+ , s′P− , s

′
V+ , s′V− , s

′
V↓ , s

′
Vc , s

′
wr, s

′
gd results in some of

the rules not being satisfied.

s′P+ any p ∈ s′P+ is either in t• or not. In the first case removing it would not satisfy
the rule

caused p after t.
while in the second it would not satisfy the inertial rule

caused p if not −p after p.
because −p 6∈ s′P− and p ∈ s since the firing is valid.

s′P− removing −p from s′P− would not satisfy the rule
caused −p after t.

s′wr removing domv,t(d) from s′wr would not satisfy the rule
domv,t(d).

s′V+ let be varv(d) ∈ s′V+ : either v ∈ dom(wr(t)) or not. In the first case the rule
caused varv(d) if domv,t(d), not −varv(d) after t.

would not be satisfied because−varv(d) 6∈ s′V− since by assumption (v, d) ∈ η′. In
the second case the inertial rule

caused varv(d) if not −varv(d), not chngv after varv(d).
would not be satisfied because −varv(d) 6∈ s′V− , chngv 6∈ s′Vc , and varv(d) ∈ s
since the firing is valid.

s′V− removing −varv(d) from s′V− would not satisfy rule
caused −varv(d) if domv,t(d), not varv(d) after t.

because varv(d) 6∈ s′V+ since (v, d) 6∈ η′.
s′V↓ removing any of the defv′ ∈ {defv | varv(d) ∈ s′V+} would contradict one of the

rules
caused defv′ if varv′ (d).

since there is a an element d′ s.t. varv′(d′) ∈ s′V+

s′Vc removing any chngv′ ∈ {chngv | v ∈ dom(wr(t))} since v′ ∈ dom(wr(t)), so
therefore there is the rule

caused chngv′ after t.
that would not be satisfied.

s′gd removing grdt from s′gd would contradict one of the guard rules according to
Lemma 11.

Lemma 13 (Correctness). Let W be a safe DAW-net and Ω(W) the corresponding
planning problem.

If 〈s, {t}, s′〉 is a legal transition in Ω(W), then Φ(s) t→ Φ(s′) is a valid firing of
W .

Proof. Let (M,η) = Φ(s) and (M ′, η′) = Φ(s′); to show that Φ(s) t→ Φ(s′) is a valid
firing ofW (see Definition 32) we need to show that:
1. t is enabled inM , i.e., {p ∈ P |M(p) > 0} ⊇ •t; and
2. D, η |= gd(t);
3. the markingM ′ satisfies the property that for every p ∈ P :

M ′(p) =


M(p)− 1 if p ∈ •t \ t•

M(p) + 1 if p ∈ t• \ •t
M(p) otherwise

4. the assignment η′ satisfies the properties that its domain is

dom(η′) = dom(η) ∪ {v | wr(t)(v) 6= ∅} \ {v | wr(t)(v) = ∅}

and for each v ∈ dom(η′):

η′(v) =

{
d ∈ wr(t)(v) if v ∈ dom(wr(t))
η(v) otherwise.

Since 〈s, {t}, s′〉 is a legal transition, then the action tmust be executable, therefore
the rule:

executable t if it1, . . . , itn.
with {it1, . . . , itn} = •t must be satisfied in s, that is •t ⊆ s and M(itj) = 1 for
1 ≤ j ≤ n.

Since 〈s, {t}, s′〉 is a legal transition, then the rule:
caused false after t, not grdt.

must be satisfied, therefore its body should be false. This means that grdt ∈ s and by
using Lemma 11 we can conclude that D, η |= gd(t).

To verify the condition onM ′, for each p ∈ P we consider the three cases:

p ∈ •t \ t• then in Ω(W) there is the rule
caused −p after t.

therefore p 6∈ s′ and Φ(s′)(p) = 0
p ∈ t• \ •t then in Ω(W) there is the rule

caused p after t.
therefore p ∈ s′ and Φ(s′)(p) = 1

p 6∈ (•t \ t•) ∪ (t• \ •t) in this case none of the bodies of rules with p (or −p) in the
head and an action in the body are satisfied because the only executed action is t.
Therefore the only “active” rule having p (or −p) in the head can be the “inertial”
one for the positive atom:

caused p if not −p after p.
Since rules with−p in the head have their bodies falsified−p 6∈ s′. This means that
the rule caused p after p. is in Ω(W)〈s,{t},s

′〉.
If Φ(s′)(p) = 0 then p 6∈ s′ therefore p 6∈ s otherwise the inertial rule would not be
satisfied; so Φ(s)(p) = 0.
If Φ(s′)(p) = 1 and Φ(s)(p) = 0, then s′ would not be minimal because s′ \ {p}
satisfies the only “active” rule with p in the head, therefore Φ(s)(p) = 1.

Now we verify the conditions on η′ and for each v ∈ V we consider three distinct
cases: v 6∈ dom(wr(t)), wr(t)(v) = ∅, and wr(t)(v) 6= ∅. First we should note that
chngv ∈ s′ iff v ∈ dom(wr(t)), therefore only in the two latter cases where the inertial
rule

caused varv(X) if not −varv(X), not chngv after varv(X).
would not be in Ω(W)〈s,{t},s

′〉.

v 6∈ dom(wr(t)): In this case, the only active rule where varv(·) appears in the head is
the inertial

caused varv(X) if not −varv(X), not chngv after varv(X).
while there are no rules with −varv(·) in the head, because for all actions t′ 6= t
are “false” in s. Therefore −varv(d) 6∈ s and chngv 6∈ s′ so varv(d) ∈ s′ iff
varv(d) ∈ s. This means that v ∈ dom(η′) iff v ∈ dom(η), and v ∈ dom(η)
implies that η′(v) = η(v).

wr(t)(v) = ∅: in this case if varv(d) ∈ s′ for some d, then defv ∈ s′ as well; therefore
the rule

caused false if defv after t.
caused chngv after t.

would not be satisfied contradicting the hypothesis that 〈s, {t}, s′〉 is a legal transi-
tion.

wr(t)(v) 6= ∅: in this case Ω(W) contains the rules
caused varv(V) if domv,t(V), not −varv(V) after t.
caused −varv(V) if domv,t(V), not varv(V) after t.
caused false if not defv after t.
caused chngv after t.

Since defv ∈ s′ otherwise the third rule would not be satisfied, there there must be a
d s.t. varv(d) ∈ s′, and this means that v ∈ dom(η′). Let assume that d 6∈ wr(t)(v),
then it means that domv,t(d) 6∈ s′ therefore none of the rules with varv(d) in the
head would be satisfied in Ω(W)〈s,{t},s

′〉 that contradicts the minimality of s′.

The analysis of the three cases confirms that the fourth condition is satisfied as well.

Theorem 5. LetW be a safe WF-net and Ω(W) the corresponding planning problem.
Let (M0, η0) be the initial state of W – i.e. with a single token in the source and no
assignments – and s0 the planning state satisfying the initial condition.

(⇒) For any case

ζ : (M0, η0)
t1→ (M1, η1) . . . (Mn−1, ηn−1)

tn→ (Mn, ηn)

inW there is a trajectory in Ω(W)

η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉

such that (Mi, ηi) = Φ(si) for each i ∈ {0 . . . n} and vice versa.
(⇐) For each trajectory

η : 〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉

in Ω(W) the sequence of firings

ζ : Φ(s0)
t1→ Φ(s1) . . . Φ(sn−1)

tn→ Φ(sn)

is a case ofW .

Proof. We first prove the left-to-right direction by induction on the length of the case.

– Base case: by construction, Φ(s0) = (M0, η0) because of the structure of the initial
state.

– Inductive case: we consider a case of size n + 1. By inductive hypothesis, for the
case (M0, η0)

t1→ (M1, η1) . . . (Mn−1, ηn−1)
tn→ (Mn, ηn) there is a trajectory

〈s0, {t1}, s1〉, . . . , 〈sn−1, {tn}, sn〉 s.t. Φ(si) =Mi for each i ∈ {0 . . . n}.
Since sn is consistent and Φ(sn) = (Mn, ηn), by Lemma 12, there is a state sn+1

s.t. 〈sn, {tn}, sn+1〉 is a legal transition and Φ(sn+1) = (Mn, ηn) thus proving the
claim.

The right-to-left direction can be proved – in the same way as the other case – by
induction on the length trajectories by using the Lemma 13.

References

1. van der Aalst, W.: The application of petri nets to workflow management. J. of Circuits, Sys.
and Comp. 08, 21–66 (Feb 1998)

2. van der Aalst, W.M.P.: Verification of workflow nets. In: Proc. of ICATPN. pp. 407–426
(1997)

3. Adriansyah, A., van Dongen, B.F., van der Aalst,W.: Conformance checking using cost-based
fitness analysis. In: Proc. of EDOC. pp. 55–64 (2011)

4. Anonymous: File “additional-main.pdf” submitted as additional material to this conference
(2017), upon acceptance, the material will be published as arXiv report and referenced here.

5. Bertoli, P., Di Francescomarino, C., Dragoni, M., Ghidini, C.: Reasoning-based techniques
for dealing with incomplete business process execution traces. In: AI*IA, LNCS, vol. 8249,
pp. 469–480. Springer (2013)

6. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process analysis: A
database theory perspective. pp. 1–12 (2013)

7. De Giacomo, G., Maggi, F.M., Marrella, A., Sardiña, S.: Computing trace alignment against
declarative process models through planning. In: ICAPS. pp. 367–375 (2016)

8. Di Francescomarino, C., Ghidini, C., Tessaris, S., Sandoval, I.V.: Completing workflow traces
using action languages. In: CAiSE. LNCS, vol. 9097, pp. 314–330. Springer (2015)

9. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to
knowledge-state planning, II: The DLVK system. Art. Intell. 144(1–2), 157–211 (2003)

10. van Hee, K., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Workflow Nets in
the Stepwise Refinement Approach. In: ICATPN. No. 2679 in Lecture Notes in Computer
Science, Springer (2003)

11. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.J.: On structured workflow modelling.
In: Seminal Contributions to Information Systems Engineering (2013)

12. de Leoni, M., van der Aalst, W.: Data-aware Process Mining: Discovering Decisions in
Processes Using Alignments. In: Proc of ACM SAC. pp. 1454–1461 (2013)

13. de Leoni, M., van der Aalst, W., van Dongen, B.F.: Data- and resource-aware conformance
checking of business processes. In: LNBIP, vol. 117, pp. 48–59 (2012)

14. Lifschitz, V.: Action languages, answer sets and planning. In: The Logic Programming
Paradigm: a 25-Year Perspective, pp. 357–373. Springer (1999)

15. Marrella, A., Russo, A., Mecella, M.: Planlets: Automatically recovering dynamic processes
in yawl. In: OTM Conferences (1). pp. 268–286 (2012)

16. Regis, G., Ricci, N., Aguirre, N., Maibaum, T.S.E.: Specifying and verifying declarative
fluent temporal logic properties of workflows. In: Proc. of SBMF. pp. 147–162 (2012)

17. Rogge-Solti, A., Ronny, S., van der Aalst, W., Weske, M.: Improving documentation by
repairing event logs. In: The Practice of Enterprise Modeling, LNBIP, vol. 165, pp. 129–144.
Springer (2013)

18. Sidorova, N., Stahl, C., Trčka, N.: Soundness verification for conceptual workflow nets with
data. Inf. Sys. 36(7), 1026–1043 (Nov 2011)

19. da Silva, C.E., de Lemos, R.: A framework for automatic generation of processes for self-
adaptive software systems. Informatica (Slov.) 35(1), 3–13 (2011)

20. van der Aalst, W., Hee, K.v., Hofstede, A.t., Sidorova, N., Verbeek, H., Voorhoeve, M.,Wynn,
M.: Soundness of workflow nets. Formal Aspects of Comp. 23(3), 333–363 (2010)

21. Vázquez Sandoval, I.: Automated Reasoning Support for Process Models using Ac-
tion Language. mastersthesis, Computer Science Faculty, Free University of Bozen–
Bolzano (2014), https://www.emcl-study.eu/fileadmin/master_theses/thesis_
isandoval.pdf

https://www.emcl-study.eu/fileadmin/master_theses/thesis_isandoval.pdf
https://www.emcl-study.eu/fileadmin/master_theses/thesis_isandoval.pdf

	Enhancing workflow-nets with data for trace completion

