Skip to main content

DSMS-FCN: A Deeply Supervised Multi-scale Fully Convolutional Network for Automatic Segmentation of Intervertebral Disc in 3D MR Images

  • Conference paper
  • First Online:
Computational Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 10734))

Abstract

This paper addresses the challenging problem of segmentation of intervertebral discs (IVDs) in three-dimensional (3D) T2-weighted magnetic resonance (MR) images. We propose a deeply supervised multi-scale fully convolutional network for segmentation of IVDs in 3D MR images. After training, our network can directly map a whole volumetric data to its volume-wise labels. Multi-scale deep supervision is designed to alleviate the potential gradient vanishing problem during training. It is also used together with partial transfer learning to boost the training efficiency when only small set of labeled training data are available. The present method was validated on the MICCAI 2015 IVD segmentation challenge datasets. Our method achieved a mean Dice overlap coefficient of 92.0% and a mean average symmetric surface distance of 0.41 mm. The results achieved by our method are better than those achieved by the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modic, M., Ross, J.: Lumbar degenerative disk disease. Radiology 245(1), 43–61 (2007)

    Article  Google Scholar 

  2. Parizel, P., Van Goethem, J., Van den Hauwe, L., Voormolen, M.: Degenerative disc disease. In: Van Goethem, J., et al. (eds.) Spinal Imaging, pp. 127–156. Medical Radiology. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68483-1_6

    Chapter  Google Scholar 

  3. An, H., Anderson, P., Haughton, V., Iatridis, J., Kang, J., Lotz, J., Natarajan, R., Oegema, T.J., Roughley, P., Setton, L., Urban, J., Videman, T., Andersson, G., Weinstein, J.: Introduction: disc degeneration: summary. Spine 29(23), 2677–2678 (2004)

    Article  Google Scholar 

  4. Chevrefils, C., Cheriet, F., Aubin, C., Grimard, G.: Texture analysis for automatic segmentation of intervertebral disks of scoliotic spines from MR images. IEEE Trans. Inf Technol. Biomed. 13(4), 608–620 (2009)

    Article  Google Scholar 

  5. Michopoulou, S., Costaridou, L., Panagiotopoulos, E., Speller, R., Panayiotakis, G., Todd-Pokropek, A.: Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans. Biomed. Eng. 56(9), 2225–2231 (2009)

    Article  Google Scholar 

  6. Ben Ayed, I., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 221–232. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0_19

    Chapter  Google Scholar 

  7. Neubert, A., Fripp, J., Engstrom, C., Schwarz, R., Lauer, L., Salvado, O., Crozier, S.: Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models. Phys. Med. Biol. 57(24), 8457–8376 (2012)

    Article  Google Scholar 

  8. Law, M., Tay, K., Leung, A., Garvin, G., Li, S.: Intervertebral disc segmentation in MR images using anisotropic oriented flux. Med. Image Anal. 17(1), 43–61 (2013)

    Article  Google Scholar 

  9. Zheng, G., Chu, C., Belavý, D., Ibragimov, B., Korez, R., Vrtovec, T., Hutt, H., Everson, R., Meakin, J., Andrade, I., Glocker, B., Chen, H., Dou, Q., Heng, P., Wang, C., Forsberg, D., Neubert, A., Fripp, J., Urschler, M., Stern, D., Wimmer, M., Novikov, A., Cheng, H., Armbrecht, G., Felsenberg, D., Li, S.: Evaluation and comparison of 3D intervertebral disc localization and segmentation methods for 3D T2 MR data: a grand challenge. Med. Image Anal. 35, 327–344 (2017)

    Article  Google Scholar 

  10. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical learning and local articulated model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 141–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_18

    Chapter  Google Scholar 

  11. Kelm, M., Wels, M., Zhou, S., Seifert, S., Suehling, M., Zheng, Y., Comaniciu, D.: Spine detection in CT and MR using iterated marginal space learning. Med. Image Anal. 17(8), 1283–1292 (2013)

    Article  Google Scholar 

  12. Chen, C., Belavy, D., Yu, W., Chu, C., Armbrecht, G., Bansmann, M., Felsenberg, D., Zheng, G.: Localization and segmentation of 3D intervertebral discs in MR images by data driven estimation. IEEE Trans. Med. Imaging 34(8), 1719–1729 (2015)

    Article  Google Scholar 

  13. Wang, Z., Zhen, X., Tay, K., Osman, S., Romano, W., Li, S.: Regression segmentation for M\(^3\) spinal images. IEEE Trans. Med. Imaging 34(8), 1640–1648 (2015)

    Article  Google Scholar 

  14. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., et al. (eds.) Proceedings of Neural Information Processing Systems – NIPS 2012, vol. 25, pp. 1097–1105. NIPS (2012)

    Google Scholar 

  16. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_31

    Chapter  Google Scholar 

  17. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2015, pp. 3431–3440 (2015)

    Google Scholar 

  19. Roth, H., Yao, J., Lu, L., Stieger, J., Burns, J., Summers, R.: Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications. In: Yao, J., et al. (eds.) Proceedings of 2nd MICCAI Workshop on Computational Methods and Clinical Applications for Spine CSI 2014, LNCVB, vol. 20, pp. 3–12. Springer (2015). https://doi.org/10.1007/978-3-319-14148-0_1

    Chapter  Google Scholar 

  20. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  21. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of 4th International Conference on 3D Vision - 3DV 2016, pp. 565–571. IEEE (2016)

    Google Scholar 

  22. Dou, Q., Yu, L., Chen, H., Jin, Y., Yang, X., Qin, J., Heng, P.A.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  23. Chen, H., Dou, Q., Wang, X., Qin, J., Cheng, J.C.Y., Heng, P.-A.: 3D fully convolutional networks for intervertebral disc localization and segmentation. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 375–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_34

    Chapter  Google Scholar 

  24. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2016, pp. 770–778. IEEE (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  27. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing. In: Proceedings of 32nd International Conference on Machine Learning - ICML 2015, vol. 37, pp. 448–456. PLMR (2015)

    Google Scholar 

  28. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Ghahramani, Z., et al. (eds.) Proceedings of Advances in Neural Information Processing Systems - NIPS 2014, pp. 3320–3328. MIT Press (2014)

    Google Scholar 

  29. Zeng, G., Yang, X., Li, J., Yu, L., Heng, P., Zheng, G.: 3D U-Net with multi-level deep supervision:fully automatic segmentation of proximal femur in 3D MR images. In: 8th MICCAI International Workshop on Machine Learning in Medical Imaging - MLMI 2017 (2017)

    Google Scholar 

  30. Fang, Q., Boas, D.: Tetrahedral mesh generation from volumetric binary and gray-scale images. In: Proceedings of 6th IEEE International Symposium on Biomedical Imaging - ISBI 2009, pp. 1142–1145. IEEE (2009)

    Google Scholar 

  31. Heimann, T., van Ginneken, B., Styner, M., Arzhaeva, Y., Aurich, V., Bauer, C., Beck, A., Becker, C., Beichel, R., Bekes, G., Bello, F., Binnig, G., Bischof, H., Bornik, A., Cashman, P., Chi, Y., Cordova, A., Dawant, B., Fidrich, M., Furst, J., Furukawa, D., Grenacher, L., Hornegger, J., Kainmüller, D., Kitney, R., Kobatake, H., Lamecker, H., Lange, T., Lee, J., Lennon, B., Li, R., Li, S., Meinzer, H., Nemeth, G., Raicu, D., Rau, A., van Rikxoort, E., Rousson, M., Rusko, L., Saddi, K., Schmidt, G., Seghers, D., Shimizu, A., Slagmolen, P., Sorantin, E., Soza, G., Susomboon, R., Waite, J., Wimmer, A., Wolf, I.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  32. Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45(6), 891–923 (1998)

    Google Scholar 

  33. Karasawa, K., Oda, M., Kitasaka, T., Misawa, K., Fujiwara, M., Chu, C., Zheng, G., Rueckert, D., Mori, K.: Multi-atlas pancreas segmentation: atlas selection based on vessel structure. Med. Image Anal. 39, 18–28 (2017)

    Article  Google Scholar 

  34. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Deformable model-based segmentation of intervertebral discs from MR spine images by using the SSC descriptor. In: Vrtovec, T., Yao, J., Glocker, B., Klinder, T., Frangi, A., Zheng, G., Li, S. (eds.) CSI 2015. LNCS, vol. 9402, pp. 117–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41827-8_11

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, G., Zheng, G. (2018). DSMS-FCN: A Deeply Supervised Multi-scale Fully Convolutional Network for Automatic Segmentation of Intervertebral Disc in 3D MR Images. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74113-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74112-3

  • Online ISBN: 978-3-319-74113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics