Skip to main content

Outage Probability Analysis of Single Energy Constraint Relay NOMA Network

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2017)

Abstract

In this paper, we investigate energy harvesting decode-and-forward relaying non-orthogonal multiple access (NOMA) networks. Specifically, one source node wishes to transmit two symbols to its two desired destinations directly and via the help of an intermediate energy constraint relay node, and the NOMA technique is applied in the transmission of both hops (from source to relay and from relay to destinations). For performance evaluation, we derive the closed-form expressions for the outage probability (OP) at \(D_1\) and \(D_2\). Our analysis is substantiated via Monte Carlo simulation. The effect of several parameters, such as power allocation factors in both transmissions in two hops, the power splitting ratio, the location of relay node, to the outage performances at two destinations is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ding, Z., Peng, M., Poor, H.V.: Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  2. Liu, Y., Ding, Z., Elkashlan, M., Yuan, J.: Non-orthogonal multiple access in large-scale underlay cognitive radio networks (2016). http://arxiv.org/abs/1601.03613

  3. Men, J., Ge, J.: Performance analysis of non-orthogonal multiple access in downlink cooperative network. IET Commun. 9(18), 2267–2273 (2015)

    Article  Google Scholar 

  4. Diamantoulakis, P.D., Pappi, K.N., Ding, Z., Karagiannidis, G.K.: Optimal design of non-orthogonal multiple access with wireless power transfer (2015). http://arxiv.org/abs/1511.01291

  5. Liu, Y., Ding, Z., Elkashlan, M., Poor, H.V.: Coperative non-orthogonal multiple access with simultaneous wireless information and power transfer (2016). http://arxiv.org/abs/1511.02833

  6. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 7th edn. Academic Press, Orlando (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Quang Nguyen .

Editor information

Editors and Affiliations

Appendices

A Appendix A: Finding the Closed-Form of Probability \(\Pr \left[ {{g_1} \geqslant {u_1},{g_2} < \frac{{{u_2}}}{{{g_1}}}} \right] \)

By using the PDF of RV \(g_1\) and CDF of RV \(g_2\), the probability \(\Pr \left[ {{g_1} \geqslant {u_1},{g_2} < \frac{{{u_2}}}{{{g_1}}}} \right] \) can be obtained as

$$\begin{aligned} \begin{gathered} \Pr \left[ {{g_1} \geqslant {u_1},{g_2} < \frac{{{u_2}}}{{{g_1}}}} \right] = \int \limits _{{u_1}}^\infty {{f_{{g_1}}}\left( x \right) } {F_{{g_2}}}\left( {\frac{{{u_2}}}{x}} \right) dx \\ = \int \limits _{{u_1}}^\infty {{\lambda _1}{e^{ - {\lambda _1}x}}\left( {1 - {e^{ - \frac{{{\lambda _2}{u_2}}}{x}}}} \right) dx} \\ = {e^{ - {\lambda _1}{u_1}}} - \underbrace{\int \limits _{{u_1}}^\infty {{\lambda _1}{e^{ - {\lambda _1}x}}{e^{ - \frac{{{\lambda _2}{u_2}}}{x}}}dx} }_{{I_1}} \\ \end{gathered} \end{aligned}$$
(A.1)

To calculate the integral \(I_1\), we first apply the Eq. 1.211 of [6]: \({e^x} = \sum \limits _{k = 0}^\infty {\frac{{{x^k}}}{{k!}}} \) to the term \({{e^{ - \frac{{{\lambda _2}{u_2}}}{x}}}}\) to obtain (A.2.1), then using Eq. 3.381.3 of [6]: \(\int _u^\infty {{x^{v - 1}}{e^{ - \mu x}}dx} = \frac{1}{{{\mu ^v}}}\varGamma \left( {v,\mu u} \right) \) to obtain (A.2.2) as follows

$$\begin{aligned} \begin{gathered} {I_1}\mathop = \limits ^{{\text {(A.2.1)}}} {\lambda _1}\sum \limits _{k = 0}^\infty {\frac{1}{{k!}}} {\left( { - {\lambda _2}{u_2}} \right) ^k}\int \limits _{{u_1}}^\infty {\frac{{{e^{ - {\lambda _1}x}}}}{{{{\left( x \right) }^k}}}dx} \\ \mathop = \limits ^{{\text {(A.2.2)}}} \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}} {\left( { - {\lambda _1}{\lambda _2}{u_2}} \right) ^k}\varGamma \left( {1 - k,{\lambda _1}{u_1}} \right) \\ \end{gathered} \end{aligned}$$
(A.2)

By substituting (A.3) into (A.1), we obtain:

$$\begin{aligned} \Pr \left[ {{g_1} \geqslant {u_1},{g_2} < \frac{{{u_2}}}{{{g_1}}}} \right] = {e^{ - {\lambda _1}{u_1}}} - \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}} {\left( { - {\lambda _1}{\lambda _2}{u_2}} \right) ^k}\varGamma \left( {1 - k,{\lambda _1}{u_1}} \right) \end{aligned}$$
(A.3)

B Appendix B: Proof of Eq. (28)

First, for the case of \({a_1} < {a_2}\left( {1 + {\gamma _t}} \right) \), the probability \(OP_{6.2}\) in (25) can be rewritten as

$$\begin{aligned} \begin{array}{l} O{P_{6.2}}|_{{a_1}< {a_2}\left( {1 + {\gamma _t}} \right) } = \Pr \left[ \begin{array}{l} {g_1} \ge \frac{{(1 - \rho + \mu ){\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) (1 - \rho ){\gamma _0}}}\\ \min \left( {\frac{{{b_1}\eta \rho {\gamma _0}{g_1}{g_3}}}{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3} + 1 + \mu }},\frac{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3}}}{{1 + \mu }}} \right)< {\gamma _t} \end{array} \right] \\ = \Pr \left[ \begin{array}{l} {g_1} \ge \frac{{(1 - \rho + \mu ){\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) (1 - \rho ){\gamma _0}}}\\ \frac{{{b_1}\eta \rho {\gamma _0}{g_1}{g_3}}}{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3} + 1 + \mu }}< \frac{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3}}}{{1 + \mu }},\frac{{{b_1}\eta \rho {\gamma _0}{g_1}{g_3}}}{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3} + 1 + \mu }}< {\gamma _t} \end{array} \right] \\ + \Pr \left[ \begin{array}{l} {g_1} \ge \frac{{(1 - \rho + \mu ){\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) (1 - \rho ){\gamma _0}}}\\ \frac{{{b_1}\eta \rho {\gamma _0}{g_1}{g_3}}}{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3} + 1 + \mu }} \ge \frac{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3}}}{{1 + \mu }},\frac{{{b_2}\eta \rho {\gamma _0}{g_1}{g_3}}}{{1 + \mu }}< {\gamma _t} \end{array} \right] \\ = \underbrace{\Pr \left[ \begin{array}{l} {g_1} \ge \frac{{(1 - \rho + \mu ){\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) (1 - \rho ){\gamma _0}}}\\ {g_3} > \frac{{\left( {{b_1} - {b_2}} \right) \left( {1 + \mu } \right) }}{{{{\left( {{b_2}} \right) }^2}\eta \rho {\gamma _0}{g_1}}},{g_3}< \frac{{\left( {1 + \mu } \right) {\gamma _t}}}{{\left( {{b_1} - {b_2}{\gamma _t}} \right) \eta \rho {\gamma _0}{g_1}}} \end{array} \right] }_{O{P_{6.2.1}}} + \underbrace{\Pr \left[ \begin{array}{l} {g_1} \ge \frac{{(1 - \rho + \mu ){\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) (1 - \rho ){\gamma _0}}}\\ {g_3} \le \frac{{\left( {{b_1} - {b_2}} \right) \left( {1 + \mu } \right) }}{{{{\left( {{b_2}} \right) }^2}\eta \rho {\gamma _0}{g_1}}},{g_3} < \frac{{\left( {1 + \mu } \right) {\gamma _t}}}{{{b_2}\eta \rho {\gamma _0}{g_1}}} \end{array} \right] }_{O{P_{6.2.2}}} \end{array} \end{aligned}$$
(B.1)

where \(OP_{6.2.1}\) and \(OP_{6.2.2}\) are given as

$$\begin{aligned} O{P_{6.2.1}} = \left\{ \begin{array}{l} \int \limits _{\frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}^\infty {{f_{{g_1}}}\left( x \right) \left[ {{F_{{g_3}}}\left( {\frac{{{\omega _3}{\gamma _t}}}{{\left( {{b_1} - {b_2}{\gamma _t}} \right) {\gamma _0}x}}} \right) - {F_{{g_3}}}\left( {\frac{{\left( {{b_1} - {b_2}} \right) {\omega _3}}}{{{{\left( {{b_2}} \right) }^2}{\gamma _0}x}}} \right) } \right] dx,\,\,\,\,\,\,if\,\,{b_1} < {b_2}\left( {1 + {\gamma _t}} \right) } \\ 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \end{array} \right. \end{aligned}$$
(B.2)
$$\begin{aligned} \begin{array}{l} O{P_{6.2.2}} = \left\{ \begin{array}{l} \Pr \left[ \begin{array}{l} {g_1} \ge \frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}\\ {g_3} \le \frac{{\left( {{b_1} - {b_2}} \right) {\omega _3}}}{{{{\left( {{b_2}} \right) }^2}{\gamma _0}{g_1}}} \end{array} \right] \,\,\,\,if\,{b_1}< {b_2}\left( {1 + {\gamma _t}} \right) \,\\ \Pr \left[ \begin{array}{l} {g_1} \ge \frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}\\ {g_3}< \frac{{{\omega _3}{\gamma _t}}}{{{b_2}{\gamma _0}{g_1}}} \end{array} \right] \,\,\,\,if\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \, \end{array} \right. \\ = \left\{ \begin{array}{l} \int \limits _{\frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}^\infty {{f_{{g_1}}}\left( x \right) \left[ {{F_{{g_3}}}\left( {\frac{{\left( {{b_1} - {b_2}} \right) {\omega _3}}}{{{{\left( {{b_2}} \right) }^2}{\gamma _0}{g_1}}}} \right) } \right] dx,} \,\,\,\,if\,{b_1} < {b_2}\left( {1 + {\gamma _t}} \right) \,\\ \int \limits _{\frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}^\infty {{f_{{g_1}}}\left( x \right) \left[ {{F_{{g_3}}}\left( {\frac{{{\omega _3}{\gamma _t}}}{{{b_2}{\gamma _0}{g_1}}}} \right) } \right] dx,} \,\,\,\,if\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \, \end{array} \right. \end{array} \end{aligned}$$
(B.3)

By substituting (B.2) and (B.3) into (B.1), and using the result in Appendix A, we obtain

$$\begin{aligned} \begin{array}{l} {\left. {O{P_{6.2}}} \right| _{{a_1}< {a_2}\left( {1 + {\gamma _t}} \right) }} = O{P_{6.2.1}} + O{P_{6.2.2}}\\ = \left\{ \begin{array}{l} \int \limits _{\frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}^\infty {{f_{{g_1}}}\left( x \right) \left[ {{F_{{g_3}}}\left( {\frac{{{\omega _3}{\gamma _t}}}{{\left( {{b_1} - {b_2}{\gamma _t}} \right) {\gamma _0}{g_1}}}} \right) } \right] dx,} \,\,\,\,if\,{b_1}< {b_2}\left( {1 + {\gamma _t}} \right) \,\\ \int \limits _{\frac{{{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}^\infty {{f_{{g_1}}}\left( x \right) \left[ {{F_{{g_3}}}\left( {\frac{{{\omega _3}{\gamma _t}}}{{{b_2}{\gamma _0}{g_1}}}} \right) } \right] dx,} \,\,\,\,if\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \, \end{array} \right. \\ = {e^{ - \frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}}} - \left\{ \begin{array}{l} \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}{{\left( { - \frac{{{\lambda _1}{\lambda _3}{\omega _3}{\gamma _t}}}{{\left( {{b_1} - {b_2}{\gamma _t}} \right) {\gamma _0}}}} \right) }^k}\varGamma \left( {1 - k,\frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}} \right) ,} \,\,\,\,if\,{b_1} < {b_2}\left( {1 + {\gamma _t}} \right) \,\\ \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}{{\left( { - \frac{{{\lambda _1}{\lambda _3}{\omega _3}{\gamma _t}}}{{{b_2}{\gamma _0}}}} \right) }^k}\varGamma \left( {1 - k,\frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{\left( {{a_1} - {a_2}{\gamma _t}} \right) {\gamma _0}}}} \right) } ,\,\,\,\,if\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \, \end{array} \right. \end{array} \end{aligned}$$
(B.4)

Next, we can obtain the result for \(OP_{6.2}\) in the case of \({{a_1} \ge {a_2}\left( {1 + {\gamma _t}} \right) }\) from (B.4) with replacing ‘\(\left( {{a_1} - {a_2}{\gamma _t}} \right) \)’ by ‘\(a_2\)’ as

$$\begin{aligned} {\left. {O{P_{6.2}}} \right| _{{a_1} \ge {a_2}\left( {1 + {\gamma _t}} \right) }} = {e^{ - \frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{{a_2}{\gamma _0}}}}} - \left\{ \begin{array}{l} \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}{{\left( { - \frac{{{\lambda _1}{\lambda _3}{\omega _3}{\gamma _t}}}{{\left( {{b_1} - {b_2}{\gamma _t}} \right) {\gamma _0}}}} \right) }^k}\varGamma \left( {1 - k,\frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{{a_2}{\gamma _0}}}} \right) ,} \,\,\,\,if\,{b_1} < {b_2}\left( {1 + {\gamma _t}} \right) \,\\ \sum \limits _{k = 0}^\infty {\frac{1}{{k!}}{{\left( { - \frac{{{\lambda _1}{\lambda _3}{\omega _3}{\gamma _t}}}{{{b_2}{\gamma _0}}}} \right) }^k}\varGamma \left( {1 - k,\frac{{{\lambda _1}{\omega _2}{\gamma _t}}}{{{a_2}{\gamma _0}}}} \right) } ,\,\,\,\,if\,{b_1} \ge {b_2}\left( {1 + {\gamma _t}} \right) \, \end{array} \right. \end{aligned}$$
(B.5)

By combining (B.4) and (B.5), we finish the proof for Eq. (28).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, S.Q., Ha, DB. (2018). Outage Probability Analysis of Single Energy Constraint Relay NOMA Network. In: Chen, Y., Duong, T. (eds) Industrial Networks and Intelligent Systems. INISCOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-74176-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74176-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74175-8

  • Online ISBN: 978-3-319-74176-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics