Skip to main content

A Hierarchical Framework for Estimating the Performance of an Aerial Network

  • Conference paper
  • First Online:
Ad Hoc Networks

Abstract

Dynamic networks such as airborne networks are characterized by fast changing topologies. Such networks require efficient strategies for estimating performance measures towards mission-specific objectives. Performance measures defined over a network will help choose optimal routes for information sharing between a pair of nodes.

This article presents a model and approach to estimate the performance of a dynamic network. First, it introduces goodness measures at three levels of hierarchy - link, path, and network, in terms of primitive metrics such as reliability, throughput, and latency. Second, it presents a strategy to estimate these goodness measures. The strategy is illustrated by applying it to find an optimal path between a pair of nodes in a network. Results presented on five benchmark networks illustrate the value of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sterbenz, J.P.G., Çetinkaya, E.K., Hameed, M.A., Jabbar, A., Qian, S., Rohrer, J.P.: Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommun. Syst. 52(2), 705–736 (2013)

    Google Scholar 

  2. Çetinkaya, E.K., Broyles, D., Dandekar, A., Srinivasan, S., Sterbenz, J.P.G.: Modelling communication network challenges for future internet resilience, survivability, and disruption tolerance: a simulation-based approach. Telecommun. Syst. 52(2), 751–766 (2013)

    Google Scholar 

  3. Sterbenz, J.P.G., Hutchison, D., Çetinkaya, E.K., Jabbar, A., Rohrer, J.P., Schller, M., Smith, P.: Redundancy, diversity, and connectivity to achieve multilevel network resilience, survivability, and disruption tolerance invited paper. Telecommun. Syst. 56(1), 17–31 (2014)

    Article  Google Scholar 

  4. Bhattacharya, A., Kumar, A.: A shortest path tree based algorithm for relay placement in a wireless sensor network and its performance analysis. Comput. Netw. 71, 48–62 (2014)

    Article  Google Scholar 

  5. Sbeiti, M., Goddemeier, N., Behnke, D., Wietfeld, C.: PASER: secure and efficient routing approach for airborne mesh networks. IEEE Trans. Wirel. Commun. 15(3), 1950–1964 (2016)

    Article  Google Scholar 

  6. Saleem, Y., Rehmani, M.H., Zeadally, S.: Integration of cognitive radio technology with unmanned aerial vehicles: issues, opportunities, and future research challenges. J. Netw. Comput. Appl. 50, 15–31 (2015)

    Article  Google Scholar 

  7. Newton, B., Aikat, J., Jeffay, K.: Analysis of topology algorithms for commercial airborne networks. In: 2014 IEEE 22nd International Conference on Network Protocols (ICNP), pp. 368–373. IEEE (2014)

    Google Scholar 

  8. Cheng, B.-N., Charland, R., Christensen, P., Veytser, L., Wheeler, J.: Evaluation of a multihop airborne IP backbone with heterogeneous radio technologies. IEEE Trans. Mobile Comput. 13(2), 299–310 (2014)

    Article  Google Scholar 

  9. Sparrow, R.D., Adekunle, A.A., Berry, R.J., Farnish, R.J.: Balancing throughput and latency for an aerial robot over a wireless secure communication link. In: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), pp. 184–189. IEEE (2015)

    Google Scholar 

  10. Vaze, R.: Throughput-delay-reliability tradeoff in ad hoc networks. In: 2010 Proceedings of the 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 459–464. IEEE (2010)

    Google Scholar 

  11. Akbar, M.S., Yu, H., Cang, S.: Delay, reliability, and throughput based QOS profile: a MAC layer performance optimization mechanism for biomedical applications in wireless body area sensor networks. J. Sens. 2016, 17 (2016)

    Article  Google Scholar 

  12. Srinivasa, S., Haenggi, M.: Throughput-delay-reliability tradeoffs in multihop networks with random access. In: 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1117–1124. IEEE (2010)

    Google Scholar 

  13. Caleffi, M., Ferraiuolo, G., Paura, L.: A reliability-based framework for multi-path routing analysis in mobile ad-hoc networks. Int. J. Commun. Netw. Distrib. Syst. 1(4–6), 507–523 (2008)

    Article  Google Scholar 

  14. Benaddy, M., Wakrim, M.: Cutset enumerating and network reliability computing by a new recursive algorithm and inclusion exclusion principle. Int. J. Comput. Appl. 45, 22–25 (2012)

    Google Scholar 

  15. Lee, K., Lee, H.-W., Modiano, E.: Reliability in layered networks with random link failures. IEEE/ACM Trans. Netw. (TON) 19(6), 1835–1848 (2011)

    Article  Google Scholar 

  16. Elias, P., Feinstein, A., Shannon, C.: A note on the maximum flow through a network. IRE Trans. Inf. Theory 2(4), 117–119 (1956)

    Article  Google Scholar 

Download references

Acknowledgments

This research work was initially carried out at the Air Force Research Laboratory, Rome, NY, USA, as part of the visiting faculty research program during the summer 2016. It was continued at the University of North Texas with the support from the National Science Foundation through the smart and connected communities program, grant No. 1622978.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamesh Namuduri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Namuduri, K., Soomro, A., Gottapu, S.K. (2018). A Hierarchical Framework for Estimating the Performance of an Aerial Network. In: Zhou, Y., Kunz, T. (eds) Ad Hoc Networks. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-74439-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74439-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74438-4

  • Online ISBN: 978-3-319-74439-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics