Skip to main content

IT Collaboration Based on Actor Network Theory: Actors Identification Through Data Quality

  • Conference paper
  • First Online:
Innovations in Smart Cities and Applications (SCAMS 2017)

Abstract

IT collaboration involves exchanging information and data within a network with several actors in order to achieve business objectives. Such cooperation is generally ensured by building a collaborative network. This work presents an approach of actors identification through data quality in Actor-Network mode of collaboration. Indeed, data quality is one of the important characteristics which expose the actor importance in the network. We investigate the translation process of ANT (Actor Network Theory), while focusing on the problematization phase in which actor-networks are identified according to the data quality level provided, and then translating this level into cost and analyzing all possible coalitions using cooperative game. The findings will allow identifying which coalitions enhance data quality. The build of such actor-network depends therefore on both data quality and the operating cost of these data between systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benqatla, M., Chikhaoui, D., Bounabat, B.: Actor network theory as a collaborative mode: the contribution of game theory in the interessement phase (2016)

    Google Scholar 

  2. Aisopos, F., Tserpes, K., Kardara, M., Panousopoulos, G., Phillips, S., Salamouras, S.: Information exchange in business collaboration using grid technologies. Identity Inf. Soc. 2(2), 189–204 (2009)

    Article  Google Scholar 

  3. Callon, M.: Some elements of a sociology of translation: domestication of the scallops and fishermen of St. Brieuc Bay. In: Law, J. (ed.) Power Action and Belief: A New Sociology of Knowledge? pp. 196–233. Routledge, London (1986)

    Google Scholar 

  4. Dameri, R.P.: From IT compliance cost to IT governance benefits: an Italian business case. In: Management of the Interconnected World (2010)

    Google Scholar 

  5. Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games, II. Princeton University Press, Princeton (1953)

    Google Scholar 

  6. Goulet, F., Vinck, D.: Innovation through withdrawal contribution to a sociology of detachment. Revue française de sociologie (English) 53, 117–146 (2012)

    Article  Google Scholar 

  7. Chinowsky, P.S., Diekmann, J., O’Brien, J.: Project organizations as social networks. J. Constr. Eng. Manag. 136, 452–458 (2010)

    Article  Google Scholar 

  8. Callon, M.: Sociologie de la traduction. In: Akrich, M., Callon, M., Latour, B. (eds.) Sociologie de la traduction- textes fondateur. Mines Paris (2006)

    Google Scholar 

  9. Mouritsen, J., Larsen, H.T., Bukh, P.N.: Intellectual Capital and the “capable firm”: narrating, visualizing and numbering for managing knowledge. Account. Organizations Soc. 26(7–8), 735–762 (2001)

    Article  Google Scholar 

  10. Parung, J., Bititci, U.S.: A conceptual metric for managing collaborative networks. J. Model. Manag. 1(2), 116–136 (2006)

    Article  Google Scholar 

  11. Camarinha-Matos, L.M., Afsarmanesh, H.: J. Intell. Manuf. 16, 439 (2005). https://doi.org/10.1007/s10845-005-1656-3

    Article  Google Scholar 

  12. International Association for Information and Data Quality (2015). http://iaidq.org/main/glossary.shtml

  13. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45, 211–218 (2002)

    Article  Google Scholar 

  14. Aladwani, A.M., Palvia, P.C.: Developing and validating an instrument for measuring user-perceived web quality. Inf. Manag. 39(6), 467–476 (2002)

    Article  Google Scholar 

  15. Batini, C., Comerio, M., Viscusi, G.: Managing quality of large set of conceptual schemas in public administration: methods and experiences. In: Model and Data Engineering, pp. 31–42. Springer, Heidelberg (2012)

    Google Scholar 

  16. Scannapieco, M., Catarci, T.: Data quality under a computer science perspective. Archivi Comput. 2, 1–15 (2002)

    Google Scholar 

  17. Närman, P., Johnson, P., Ekstedt, M., Chenine, M., König, J.: Enterprise architecture analysis for data accuracy assessments. In: Enterprise Distributed Object Computing Conference (2009)

    Google Scholar 

  18. Agndal, H., Nilsson, U.: Interorganizational cost management in the exchange process. Manag. Account. Res. 20, 85–101 (2009)

    Article  Google Scholar 

  19. Grabisch, M., Funaki, Y.: A coalition formation value for games with externalities. Version revise - Documents de travail du Centre d’Economie de la Sorbonne 2008. 76 - ISSN: 1955-611X, <halshs-00344797v2> (2011)

    Google Scholar 

  20. Williamson, Oe: Transaction-cost economics: the governance of contractual relations. J. Law Econ. 22(20), 233–261 (1979)

    Article  Google Scholar 

  21. Shin, D.H.: Convergence and divergence: Policy making about the convergence of technology in Korea. Government Inf. Q. 27, 147–160 (2010)

    Article  Google Scholar 

  22. Latour, B.: We have never been modern. Harvest Wheatsheaf, Hemel Hempstead (1993)

    Google Scholar 

  23. Belhiah, M., Benqatla, M.S., Bounabat, B.: Decision support system for implementing data quality projects. In: Helfert, M., Holzinger, A., Belo, O., Francalanci, C. (eds.) Data Management Technologies and Applications, DATA 2015 (2016)

    Google Scholar 

  24. Camarinha-Matos, L.M., Afsarmanesh, H. (eds.): Collaborative Networks: Reference Modeling. Springer Science & Business Media (2008)

    Google Scholar 

  25. Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16, 439–452 (2005)

    Article  Google Scholar 

  26. Ahuja, G.: Collaboration networks, structural holes, and innovation: a longitudinal study. Adm. Sci. Q. 45, 425–455 (2000)

    Article  Google Scholar 

  27. Park, H., Han, S.H.: Impact of inter-firm collaboration networks in international construction projects: a longitudinal study. In: Construction Research Congress 2012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Salim Benqatla , Meryam Belhiah , Dikra Chikhaoui or Bounabat Bouchaib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benqatla, M.S., Belhiah, M., Chikhaoui, D., Bouchaib, B. (2018). IT Collaboration Based on Actor Network Theory: Actors Identification Through Data Quality. In: Ben Ahmed, M., Boudhir, A. (eds) Innovations in Smart Cities and Applications. SCAMS 2017. Lecture Notes in Networks and Systems, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-319-74500-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74500-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74499-5

  • Online ISBN: 978-3-319-74500-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics