Skip to main content

A Framework for Analyzing Adaptive Autonomous Aerial Vehicles

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10729))

Included in the following conference series:

Abstract

Unmanned aerial vehicles (UAVs), a.k.a. drones, are becoming increasingly popular due to great advancements in their control mechanisms and price reduction. UAVs are being used in applications such as package delivery, plantation and railroad track monitoring, where UAVs carry out tasks in an automated fashion. Devising how UAVs achieve a task is challenging as the environment where UAVs are deployed is normally unpredictable, for example, due to winds. Formal methods can help engineers to specify flight strategies and to evaluate how well UAVs are going to perform to achieve a task. This paper proposes a formal framework where engineers can raise the confidence in their UAV specification by using symbolic, simulation and statistical and model checking methods. Our framework is constructed over three main components: the behavior of UAVs and the environment are specified in a formal executable language; the UAV’s physical model is specified by a simulator; and statistical model checking algorithms are used for the analysis of system behaviors. We demonstrate the effectiveness of our framework by means of several scenarios involving multiple drones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 107.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    IOP binaries and documentation are available at https://jlambda.com/~iop/.

References

  1. Arduplane, arducopter, ardurover. https://github.com/ArduPilot/ardupilot

  2. Ascens: Autonomic service-component ensembles. http://www.ascens-ist.eu

  3. Bae, K., Ölveczky, P.C., Feng, T.H., Lee, E.A., Tripakis, S.: Verifying hierarchical ptolemy II discrete-event models using real-time maude. Sci. Comput. Program. 77(12), 1235–1271 (2012)

    Article  MATH  Google Scholar 

  4. Barros, J., Brito, A., Oliveira, T., Nigam, V.: A framework for the analysis of UAV strategies using co-simulation. In: SBESC (2016)

    Google Scholar 

  5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Why BNSF railway is using drones to inspect thousands of miles of rail lines. http://fortune.com/2015/05/29/bnsf-drone-program/

  7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude: A High-Performance Logical Framework. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    MATH  Google Scholar 

  8. Dantas, Y.G., Lemos, M.O.O., Fonseca, I.E., Nigam, V.: Formal specification and verification of a selective defense for TDoS attacks. In: Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 82–97. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44802-2_5

    Chapter  Google Scholar 

  9. Dantas, Y.G., Nigam, V., Fonseca, I.E.: A selective defense for application layer DDos attacks. In: JISIC (2014)

    Google Scholar 

  10. Das, J., Cross, G., Qu, A.M.C., Tokekar, P., Mulgaonkar, Y., Kumar, V.: Devices, systems, and methods for automated monitoring enabling precision agriculture. In: CASE (2015)

    Google Scholar 

  11. Autonomous taxi drones. https://www.forbes.com/sites/parmyolson/2017/02/14/dubai-autonomous-taxi-drones-ehang/#54543d934702

  12. Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems. In: Software-Intensive Systems and New Computing Paradigms (2008)

    Google Scholar 

  13. Hölzl, M., Wirsing, M.: Towards a system model for ensembles. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 241–261. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24933-4_12

    Chapter  Google Scholar 

  14. The JSBSim flight dynamics model. http://www.jsbsim.org

  15. Kanovich, M., Ban Kirigin, T., Nigam, V., Scedrov, A., Talcott, C.: Timed multiset rewriting and the verification of time-sensitive distributed systems. In: Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 228–244. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7_14

    Chapter  Google Scholar 

  16. Kernbach, S., Schmickl, T., Timmis, J.: Collective adaptive systems: challenges beyond evolvability. In: Fundamentals of Collective Adaptive Systems. European Commission (2009)

    Google Scholar 

  17. Networked cyber physical systems. http://ncps.csl.sri.com

  18. Kim, M., Stehr, M.-O., Kim, J., Ha, S.: An application framework for loosely coupled networked cyber-physical systems. In: EUC (2010)

    Google Scholar 

  19. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: Combining formal verification with observed system execution behavior to tune system parameters. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 257–273. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_19

    Chapter  Google Scholar 

  20. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: A probabilistic formal analysis approach to cross layer optimization in distributed embedded systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 285–300. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5_18

    Chapter  Google Scholar 

  21. Kim, M., Stehr, M.-O., Talcott, C., Dutt, N., Venkatasubramanian, N.: XTune: a formal methodology for cross-layer tuning of mobile embedded systems. Trans. Embed. Comput. Syst. (2011)

    Google Scholar 

  22. Knightscope. http://www.knightscope.com

  23. Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation schemes. Ann. Pure Appl. Log. 152(1–3), 122–131 (2008)

    Article  MATH  Google Scholar 

  24. Liquid robotics. http://liquidr.com

  25. Loreti, M., Hillston, J.: Modelling and analysis of collective adaptive systems with CARMA and its tools. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 83–119. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_4

    Google Scholar 

  26. Mason, I.A., Talcott, C.L.: IOP: the interoperability platform and IMaude: an interactive extension of maude. In: WRLA 2004 (2004)

    Google Scholar 

  27. MAVLink micro air vehicle marshalling/communication library. https://github.com/ArduPilot/mavlink.git

  28. Nigam, V., Talcott, C., Aires Urquiza, A.: Towards the automated verification of cyber-physical security protocols: bounding the number of timed intruders. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 450–470. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45741-3_23

    Chapter  Google Scholar 

  29. Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for real-time maude. In: WRLA (2007)

    Google Scholar 

  30. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time maude. High.-Order Symb. Comput. 20(1–2), 161–196 (2007)

    Article  MATH  Google Scholar 

  31. Inventory robotics. http://www.pinc.com/inventory-robotics-cycle-counting-drones

  32. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and analyzer for probabilistic systems. In: QEST (2005)

    Google Scholar 

  33. SITL (2016). http://python.dronekit.io/about/index.html

  34. Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis of robust adaptive distributed cyber-physical systems. In: Bernardo, M., De Nicola, R., Hillston, J. (eds.) SFM 2016. LNCS, vol. 9700, pp. 1–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34096-8_1

    Google Scholar 

  35. Talcott, C., Arbab, F., Yadav, M.: Soft agents: exploring soft constraints to model robust adaptive distributed cyber-physical agent systems. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 273–290. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_18

    Chapter  Google Scholar 

  36. Drone swarms: The buzz of the future. https://www.vlab.org/events/drone-swarms/

Download references

Acknowledgments

Nigam was partially supported by Capes and CNPq. This work has been partially developed under contracting of Diehl Aerospace GmbH and Airbus Defense GmbH. Talcott and Mason were partially supported by ONR grant N00014-15-1-2202. Nigam and Talcott were partially supported by Capes Science without Borders grant 88881.030357/2013-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Nigam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mason, I.A., Nigam, V., Talcott, C., Brito, A. (2018). A Framework for Analyzing Adaptive Autonomous Aerial Vehicles. In: Cerone, A., Roveri, M. (eds) Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science(), vol 10729. Springer, Cham. https://doi.org/10.1007/978-3-319-74781-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74781-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74780-4

  • Online ISBN: 978-3-319-74781-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics