Skip to main content

Virtual Reality Based Simulators for Neurosurgeons - What We Have and What We Hope to Have in the Nearest Future

  • Conference paper
  • First Online:
Biomedical Engineering and Neuroscience (BCI 2018)

Abstract

High levels of manual skills, good visual-motor coordination, excellent imagination and spatial awareness are the main factors determining the success of neurosurgeons. Proficiency in neurosurgical skills used to be acquired through hands-on training in cadaver labs and in real operating theatres under master neurosurgeon supervision. Most recently, virtual reality (VR) and augmented reality (AR) computer simulations have also been considered as tools for education in the neurosurgical training. The authors review existing solutions and present their own concept of a simulator which could become the useful tool for planning, simulation and training of a specific neurosurgical procedure using patient’s imaging data. The benefits of simulator are particularly apparent in the context of neurovascular operations. It is the field in which it is very difficult for young neurosurgeons to gain proficiency because of the lack of experience caused by the competition between microsurgery and endovascular techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaraj, A., Charbel, F.T., Birk, D., Tobin, M., Luciano, C., Banerjee, P.P., Rizzi, S., Sorenson, J., Foley, K., Slavin, K., Roitberg, B.: Role of cranial and spinal virtual and augmented reality simulation using immersive touch modules in neurosurgical training. Neurosurgery 72(1), 115–123 (2013). https://doi.org/10.1227/neu.0b013e3182753093

    Article  Google Scholar 

  2. Alaraj, A., Luciano, C.J., Bailey, D.P., Elsenousi, A., Roitberg, B.Z., Bernardo, A., Banerjee, P.P.: Charbel FT: virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 2, 52–58 (2015). https://doi.org/10.1227/neu.0000000000000583

    Google Scholar 

  3. Alotaibi, F.E., AlZhrani, G.A., Mullah, M.A., Sabbagh, A.J., Azarnoush, H., Winkler-Schwartz, A., Del Maestro, R.F.: Assessing bimanual performance in brain tumor resection with NeuroTouch, a virtual reality simulator. Neurosurgery 11(Suppl 2), 89–98 (2015). https://doi.org/10.1227/neu.0000000000000631. discussion 98

    Google Scholar 

  4. Alotaibi, F.E., AlZhrani, G.A., Sabbagh, A.J., Azarnoush, H., Winkler-Schwartz, A., Del Maestro, R.F.: Neurosurgical assessment of metrics including judgment and dexterity using the virtual reality simulator NeuroTouch (NAJD metrics). Surg. Innov. 22(6), 636–642 (2015). https://doi.org/10.1177/1553350615579729

    Article  Google Scholar 

  5. AlZhrani, G., Alotaibi, F., Azarnoush, H., Winkler-Schwartz, A., Sabbagh, A., Bajunaid, K., Lajoie, S.P., Del Maestro, R.F.: Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch. J Surg. Educ. 72(4), 685–696 (2015). https://doi.org/10.1016/j.jsurg.2014.12.014

    Article  Google Scholar 

  6. Azarnoush, H., Alzhrani, G., Winkler-Schwartz, A., Alotaibi, F., Gelinas-Phaneuf, N., Pazos, V., Choudhury, N., Fares, J., DiRaddom, R., Del Maestro, R.F.: Neurosurgical virtual reality simulation metrics to assess psychomotor skills during brain tumor resection. Int. J. Comput. Assist. Radiol. Surg. 10(5), 603–618 (2015). https://doi.org/10.1007/s11548-014-1091-z

    Article  Google Scholar 

  7. Banerjee, P.P., Luciano, C.J., Lemole Jr., G.M., Charbel, F.T., Oh, M.Y.: Accuracy of ventriculostomy catheter placement using a head- and hand-tracked high-resolution virtual reality simulator with haptic feedback. J. Neurosurg. 107(3), 515–521 (2007)

    Article  Google Scholar 

  8. Bekelis, K., Gottlieb, D.J., Su, Y., O’Malley, A.J., Labropoulos, N., Goodney, P., Lawton, M.T., MacKenzie, T.A.: Comparison of clipping and coiling in elderly patients with unruptured cerebral aneurysms. J. Neurosurg. 126(3), 811–818 (2017). https://doi.org/10.3171/2016.1.JNS152028

    Article  Google Scholar 

  9. Clark, A.D., Barone, D.G., Candy, N., Guilfoyle, M., Budohoski, K., Hofmann, R., Santarius, T., Kirollos, R., Trivedi, R.A.: The effect of 3-dimensional simulation on neurosurgical skill acquisition and surgical performance: a review of the literature. J. Surg. Educ. 22(16) (2017). https://doi.org/10.1016/j.jsurg.2017.02.007. S1931–7204, 30316-6 (Epub ahead of print)

  10. Gasco, J., Holbrook, T.J., Patel, A., Smith, A., Paulson, D., Muns, A., Desai, S., Moisi, M., Kuo, Y.F., Macdonald, B., Ortega-Barnett, J., Patterson, J.T.: Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery 73(Suppl 1), 39–45 (2013). https://doi.org/10.1227/NEU.0000000000000102

    Article  Google Scholar 

  11. Konakondla, S., Fong, R., Schirmer, C.M.: Simulation training in neurosurgery: advances in education and practice. Adv. Med. Educ. Pract. 14(8), 465–473 (2017). https://doi.org/10.2147/AMEP.S113565

    Article  Google Scholar 

  12. Korja, M., Kivisaari, R., RezaiJahromi, B., Lehto, H.: Size and location of ruptured intracranial aneurysms: consecutive series of 1993 hospital-admitted patients. J. Neurosurg. 2, 1–6 (2016). https://doi.org/10.3171/2016.9.JNS161085

    Google Scholar 

  13. Krähenbühl, S.M., Čvančara, P., Stieglitz, T., Bonvin, R., Michetti, M., Flahaut, M., Durand, S., Deghayli, L., Applegate, L.A., Raffoul, W.: Return of the cadaver: key role of anatomic dissection for plastic surgery resident training. Medicine (Baltimore) 96(29), e7528 (2017). https://doi.org/10.1097/MD.0000000000007528

    Article  Google Scholar 

  14. Luciano, C.J., Banerjee, P.P., Bellotte, B., Oh, G.M., Lemole Jr., M., Charbel, F.T., Roitberg, B.: Learning retention of thoracic pedicle screw placement using a high-resolution augmented reality simulator with haptic feedback. Neurosurgery 69(Suppl Operative 1), 14–19 (2011). https://doi.org/10.1227/neu.0b013e31821954ed

    Google Scholar 

  15. Mashiko, T., Kaneko, N., Konno, T., Otani, K., Nagayama, R., Watanabe, E.: Training in cerebral aneurysm clipping using self-made 3-dimensional models. J. Surg. Educ. 74(4), 681–689 (2017). https://doi.org/10.1016/j.jsurg.2016.12.010

    Article  Google Scholar 

  16. Molyneux, A.J., Kerr, R.S., Yu, L.M., Clarke, M., Sneade, M., Yarnold, J.A., Sandercock, P.: International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 366(9488), 809–817 (2005)

    Article  Google Scholar 

  17. Mundschenk, M.B., Odom, E.B., Ghosh, T.D., Kleiber, G.M., Yee, A., Patel, K.B., Mackinnon, S.E., Tenenbaum, M.M., Buck II, D.W.: Are residents prepared for surgical cases? Implications in patient safety and education. J. Surg. Educ. 18 (2017). https://doi.org/10.1016/j.jsurg.2017.07.001. S1931-7204

  18. Pfandler, M., Lazarovici, M., Stefan, P., Wucherer, P., Weigl, M.: Virtual reality based simulators for spine surgery: a systematic review. Spine J. 17 (2017). https://doi.org/10.1016/j.spinee.2017.05.016. S1529-9430, 30208-5. (Epub ahead of print)

  19. Steklacova, A., Bradac, O., Charvat, F., De Lacy, P., Benes, V.: “Clip first” policy in the management of intracranial MCA aneurysms: Single-centre experience with a systematic review of the literature. Acta Neurochir. (Wien) 158(3), 533–546 (2016). https://doi.org/10.1007/s00701-015-2687-y. discussion 546

    Article  Google Scholar 

  20. Wang, L., Ye, X., Hao, Q., Chen, Y., Chen, X., Wang, H., Wang, R., Zhao, Y., Zhao, J.: Comparison of two three-dimensional printed models of complex intracranial aneurysms for surgical simulation. World Neurosurg. 103, 671–679 (2017). https://doi.org/10.1016/j.wneu.2017.04.098

    Article  Google Scholar 

  21. Winkler-Schwartz, A., Bajunaid, K., Mullah, M.A., Marwa, I., Alotaibi, F.E., Fares, J., Baggiani, M., Azarnoush, H., Zharni, G.A., Christie, S., Sabbagh, A.J., Werthner, P., Del Maestro, R.F.: Bimanual psychomotor performance in neurosurgical resident applicants assessed using neurotouch, a virtual reality simulator. J. Surg. Educ. 73(6), 942–953 (2016). https://doi.org/10.1016/j.jsurg.2016.04.013

    Article  Google Scholar 

  22. Xu, W., Zhang, X., Ke, T., Cai, H., Gao, X.: 3D printing-assisted preoperative plan of pedicle screw placement for middle-upper thoracic trauma: a cohort study. BMC Musculoskelet Disord. 18(1), 348 (2017). https://doi.org/10.1186/s12891-017-1703-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Latka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Latka, D. et al. (2018). Virtual Reality Based Simulators for Neurosurgeons - What We Have and What We Hope to Have in the Nearest Future. In: Hunek, W., Paszkiel, S. (eds) Biomedical Engineering and Neuroscience. BCI 2018. Advances in Intelligent Systems and Computing, vol 720. Springer, Cham. https://doi.org/10.1007/978-3-319-75025-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75025-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75024-8

  • Online ISBN: 978-3-319-75025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics