Skip to main content

Predicate Fully Homomorphic Encryption: Achieving Fine-Grained Access Control over Manipulable Ciphertext

  • Conference paper
  • First Online:
Book cover Information Security and Cryptology (Inscrypt 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10726))

Included in the following conference series:

Abstract

With the popularity of cloud computing, there is an increasing demand for enforcing access control over outsourced files and performing versatile operations on encrypted data. To meet this demand, a novel primitive called predicate fully homomorphic encryption (PFHE) is introduced and modeled in this work, which can provide the security guarantee that neither cloud computing server nor invalid cloud users can acquire any extra information about the processed data, while the server can still process the data correctly. We give a generic construction for PFHE, from any predicate key encapsulation mechanism (PKEM) and any LWE-based multi-key fully homomorphic encryption (MFHE). Compared with previously proposed generic construction for attribute-based fully homomorphic encryption (ABFHE), which can naturally be extended to one for PFHE, our construction has advantages in both time for encryption and space for encrypted data storage. In addition, our construction can achieve CCA1-secure. Thus it directly implies approaches for CCA1-secure FHE, CCA1-secure PFHE and CCA1-secure MFHE. The latter two have not been touched in previous work. In addition, we give a conversion which results a CCA1-secure PFHE scheme from a CPA-secure one, drawing on the techniques for CCA2-secure PE schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_13

    Chapter  Google Scholar 

  3. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30

    Chapter  Google Scholar 

  4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  5. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute-based encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 330–360. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_13

    Chapter  Google Scholar 

  6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

    Google Scholar 

  7. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_8

    Chapter  Google Scholar 

  8. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_8

    Chapter  Google Scholar 

  9. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27

    Chapter  Google Scholar 

  10. Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Huang, X.: Cryptographic hierarchical access control for dynamic structures. IEEE Trans. Inf. Forensics Secur. 11(10), 2349–2364 (2016)

    Article  MATH  Google Scholar 

  11. Castiglione, A., Santis, A.D., Masucci, B., Palmieri, F., Castiglione, A., Li, J., Huang, X.: Hierarchical and shared access control. IEEE Trans. Inf. Forensics Secur. 11(4), 850–865 (2016)

    Google Scholar 

  12. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourcing of modular exponentiations. IEEE Trans. Parallel Distrib. Syst. 25(9), 2386–2396 (2014)

    Article  Google Scholar 

  13. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_31

    Chapter  Google Scholar 

  14. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    Chapter  Google Scholar 

  18. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: STOC, pp. 545–554 (2013)

    Google Scholar 

  19. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_25

    Chapter  Google Scholar 

  20. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS, pp. 89–98 (2006)

    Google Scholar 

  21. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  22. Huang, X., Liu, J.K., Tang, S., Xiang, Y., Liang, K., Xu, L., Zhou, J.: Cost-effective authentic and anonymous data sharing with forward security. IEEE Trans. Comput. 64(4), 971–983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Indyk, P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. In: FOCS, pp. 189–197 (2000)

    Google Scholar 

  24. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_9

    Chapter  Google Scholar 

  25. Liu, J.K., Au, M.H., Huang, X., Lu, R., Li, J.: Fine-grained two-factor access control for web-based cloud computing services. IEEE Trans. Inf. Forensics Secur. 11(3), 484–497 (2016)

    Article  Google Scholar 

  26. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234 (2012)

    Google Scholar 

  27. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_26

    Chapter  Google Scholar 

  28. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)

    Google Scholar 

  30. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  31. Shaltiel, R.: An introduction to randomness extractors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 21–41. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22012-8_2

    Chapter  Google Scholar 

  32. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4

    Chapter  Google Scholar 

  33. Wu, Q., Qin, B., Zhang, L., Domingo-Ferrer, J., Farràs, O., Manjón, J.A.: Contributory broadcast encryption with efficient encryption and short ciphertexts. IEEE Trans. Comput. 65(2), 466–479 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_15

    Chapter  Google Scholar 

  35. Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient revocation in cloud storage systems. In: ASIACCS, pp. 523–528 (2013)

    Google Scholar 

Download references

Acknowledgment

Qianhong Wu is the corresponding author. This paper is supported by the National Key Research and Development Program of China through project 2017YFB0802505, the Natural Science Foundation of China through projects 61772538, 61672083, 61370190, 61532021, 61472429 and 61402029, and by the National Cryptography Development Fund through project MMJJ20170106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianhong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, H., Liu, J., Wu, Q., Liu, W. (2018). Predicate Fully Homomorphic Encryption: Achieving Fine-Grained Access Control over Manipulable Ciphertext. In: Chen, X., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2017. Lecture Notes in Computer Science(), vol 10726. Springer, Cham. https://doi.org/10.1007/978-3-319-75160-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75160-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75159-7

  • Online ISBN: 978-3-319-75160-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics