Abstract
Currently, the space requirement of sieving algorithms to solve the shortest vector problem (SVP) grows as \(2^{0.2075n+o(n)}\), where n is the lattice dimension. In high dimensions, the memory requirement makes them uncompetitive with enumeration algorithms. Shi Bai et al. presents a filtered triple sieving algorithm that breaks the bottleneck with memory \( 2^{0.1887n+o(n)}\) and time \( 2^{0.481n+o(n)}\).
Benefiting from the angular locality-sensitive hashing (LSH) method, our proposed algorithm runs in time \(2^{0.4098n+o(n)}\) with the same space complexity \(2^{0.1887n+o(n)}\) as the filtered triple sieving algorithm. Our experiment demonstrates that the proposed algorithm achieves the desired results. Furthermore, we use the proposed algorithm to solve the closest vector problem (CVP) with the lowest space complexity as far as we know in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The average probability that a distant (non-reducing) vector \(\varvec{w}\) collides with \(\varvec{v}\) in at least one of the t hash tables [20].
References
Lenstra, H.W., Lenstra, A.K., Lovfiasz, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)
Kannan, R.: Improved algorithms for integer programming and related lattice problems. In: ACM Symposium on Theory of Computing, 25–27 April 1983, Boston, Massachusetts, USA, pp. 193–206 (1983)
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp. 68–85. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54458-5_51
Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_13
Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_1
Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_31
Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_30
Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: ACM Symposium on Theory of Computing, pp. 601–610 (2002)
Nguyen, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem are practical. J. Math. Cryptology 2(2), 181–207 (2008)
Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic sieve algorithm for shortest vector problem. In: ACM Symposium on Information, Computer and Communications Security, ASIACCS 2011, Hong Kong, China, March 2011, pp. 1–9 (2011)
Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1468–1480 (2010)
Pujol, X., Stehl, D.: Solving the shortest lattice vector problem in time 2 2.465n. IACR Cryptology ePrint Archive, vol. 2009 (2006)
Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on Voronoi cell computations. In: ACM Symposium on Theory of Computing, pp. 351–358 (2010)
Aggarwal, D., Dadush, D., Regev, O., Stephens-Davidowitz, N.: Solving the shortest vector problem in 2 n time using discrete Gaussian sampling: extended abstract. In: Forty-Seventh ACM Symposium on Theory of Computing, pp. 733–742 (2015)
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Thiry-Fourth ACM Symposium on Theory of Computing, pp. 380–388 (2002)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Theory of Computing, no. 11, pp. 604–613 (2000)
Becker, A., Laarhoven, T.: Efficient (ideal) lattice sieving using cross-polytope LSH. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 3–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1_1
Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to lattice sieving. In: Twenty-Seventh ACM-SIAM Symposium on Discrete Algorithms, pp. 10–24 (2016)
Shi, B.: Tuple lattice sieving. LMS J. Comput. Math. 19(A), 146–162 (2016)
Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 3–22. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_1
Panigrahy, R.: Entropy based nearest neighbor search in high dimensions. In: SODA 2006: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1186–1195 (2005)
Goldstein, D., Mayer, A.: On the equidistribution of hecke points. Forum Mathematicum 15(2), 165–189 (2003)
Goldstein, D.M.A.: SVP challenge (2010). http://www.latticechallenge.org
Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 375–391. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-7_22
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Wang, P., Shang, D. (2018). A New Lattice Sieving Algorithm Base on Angular Locality-Sensitive Hashing. In: Chen, X., Lin, D., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2017. Lecture Notes in Computer Science(), vol 10726. Springer, Cham. https://doi.org/10.1007/978-3-319-75160-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-75160-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75159-7
Online ISBN: 978-3-319-75160-3
eBook Packages: Computer ScienceComputer Science (R0)